Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:35:28.530Z Has data issue: false hasContentIssue false

Controlled Growth of Single-Walled Carbon Nanotubes from a Line Patterned Mesoporous Silica Template

Published online by Cambridge University Press:  15 February 2011

Limin Huang
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027, USA.
Shalom J. Wind
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA.
Stephen P. O'Brien
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027, USA.
Get access

Abstract

Carbon nanotubes (CNTs) with controlled orientation and diameter (1-4 nm) were grown from thermally stable, highly ordered mesoporous SiO2 thin films by methane chemical vapor deposition (CVD). Controlled incorporation of Fe precursor into pore channels of the mesoporous SiO2 by a sol-gel process results in a nanostructure catalytically active for CNT growth and stable to typical CVD temperatures. Growth of CNTs starts within the mesoporous SiO2, whose pore direction and pore dimension play an important role in the orientation and diameter of the CNTs at the early stage of the growth. Lateral growth results in a parallel assembly of CNTs with controlled tube dimension from a line-micropatterned mesoporous SiO2 film fabricated by soft-lithography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dai, H. J., Surf. Sci. 500, 218 (2002).Google Scholar
2. Avouris, Ph., Acc. Chem. Res. 35, 1026 (2002).Google Scholar
3. Ouyang, M., Huang, J. L., Lieber, C. M., Acc. Chem. Res. 35, 1018 (2002).Google Scholar
4. Wind, S. J., Martel, R., Avouris, Ph., J. Vac Sci. Technol. B 20, 2745 (2002).Google Scholar
5. Zheng, F.; Liang, L., Gao, Y. F., Sukamto, J. H., Aardahl, C. L., Nano Lett. 2, 729 (2002).Google Scholar
6. Zheng, G. F., Zhu, H. G., Luo, Q., Zhou, Y. M., Zhao, D. Y., Chem. Mater. 13, 2240 (2001)Google Scholar
7. Zhu, H. W., Xu, C. L., Wu, D. H., Wei, B. Q., Vajtai, R., Ajayan, P. M., Science 296, 884 (2002).Google Scholar
8. Cassell, A. M., Franklin, N. R., Tombler, T. W., Chan, E. M., Han, J., Dai, H. J., J. Am. Chem. Soc. 121, 7975 (1999).Google Scholar
9. Joselevich, E., Lieber, C. M., Nano Lett. 2, 1137 (2002).Google Scholar
10. Zhang, Y. G., Chang, A. L., Cao, J., Wang, Q., Kim, W., Kong, Y., Dai, H. J., Appl. Phys. Lett. 79, 3155 (2001).Google Scholar
11. Huang, L. M., Wind, S. J., O'Brien, S. P., Nano Lett. 3 299 (2003).Google Scholar
12. Li, Y. M., Kim, W., Zhang, Y. G., Rolandi, M., Wang, D. W., Dai, H. J., J. Phys. Chem. B 105, 11424 (2001).Google Scholar
13. Cheung, C. L., Kurtz, A., Park, H., Lieber, C. M., J. Phys. Chem. B 106, 2429 (2002).Google Scholar
14. Yang, P. D., Deng, T., Zhao, D. Y., Feng, P. Y., Pine, D., Chmelka, B. F., Whitesides, G. M., Stucky, G. D., Science 282, 2244 (1998).Google Scholar