Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:11:49.476Z Has data issue: false hasContentIssue false

Controlled Environment Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

I. M. Robertson*
Affiliation:
Department of Materials Science and Engineering, University of Illinois, 1304 W. Green St. Urbana IL 61801, [email protected]
Get access

Abstract

The basic design features of a controlled environment transmission electron microscope and the details of the one at the University of Illinois are described. Examples of how this instrument has been used to determine fundamental mechanisms of hydrogen embrittlement in metals are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marton, L., Acad. r. Belg. Cl. Sci. 21, 553 (1935).Google Scholar
2.Butler, E. P. and Hale, K. F., in Practical Methods in Electron Microscopy; Vol. 9, edited by Glauert, A. M. (North-Holland, Amsterdam, 1981), p. 239.Google Scholar
3.Baules, P., Millet, P., Casanove, M.J., Snoeck, E., and Roucau, C., J. Microsc. Spectrosc. Electron. (France) 14. 305 (1989).Google Scholar
4.Ross, F.M. and Searson, P.C., in Dynamic observation of electrochemical etching in silicon, Oxford, 1995 (Institute of Physics Conference), p. 511.Google Scholar
5.Ross, F.M. and Searson, P.C., in In situ observation of an electrochemical etching reaction in silicon, Boston, 1995 (Materials Research Society, Boston), p. 69.Google Scholar
6.Berman, A., Vacuum Engineering Calculations, Formulas and Solved Exercises (Academic Press, San Diego, 1992).Google Scholar
7.Vacuum (Leybold Vacuum Products INC, Export, Pa, 1990).Google Scholar
8.Bond, G.M., Robertson, I.M., and Birnbaum, H.K., Scripta Metall. 20, 653 (1986).Google Scholar
9.Lacaze, J.C., Memoire CNAM Central Regional agree de Toulouse, France, Cited in Butler and Hale (1977).Google Scholar
10.Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M., and Birnbaum, H.K., Review of Scientific Instruments 62, 1438 (1991).Google Scholar
11.Teter, D., Ferreira, P., Robertson, I.M., and Birnbaum, H.K., in An environmental Cell TEM for studies of gas-solid interactions, in New Techniques for Characterizing Corrosion and Stress Corrosion, Clevland, Ohio, 1995 (TMS, Warrendale, Pa), p. 53.Google Scholar
12.Robertson, I.M. and Teter, D., Journal Microscopy Research and Technique 42, 260 (1998).Google Scholar
13.Tabata, T. and Birnbaum, H.K., Scripta Metall. 17, 947 (1984).Google Scholar
14.Birnbaum, H.K., Shih, D.S., and Robertson, I.M., in HVEM Environmental Cell Studies of Hydrogen effects in Alpha-Titanium, Osaka, 1985, p. 53.Google Scholar
15.Robertson, I.M. and Birnbaum, H.K., Acta Metall. 34, 353 (1986).Google Scholar
16.Bond, G.M., Robertson, I.M., and Birnbaum, H.K., Acta Metall. 35, 2289 (1987).Google Scholar
17.Bond, G.M., Robertson, I.M., and Birnbaum, H.K., Acta Metall. 36, 2193 (1988).Google Scholar
18.Shih, D.S., Robertson, I.M., and Birnbaum, H.K., Acta Metall. 36, 111 (1988).Google Scholar
19.Bond, G.M., Robertson, I.M., and Birnbaum, H.K., Acta Metall. 37, 1407 (1989).Google Scholar
20.Rozenak, P., Robertson, I.M., and Birnbaum, H.K., Acta Metall. Mater. 38, 2031 (1990).Google Scholar
21.Hanninen, H.E., Lee, T.C., Robertson, I.M., and Birnbaum, H.K., Journal of Materials Engineering & Performance 2, 807 (1993).Google Scholar
22.Ferreira, P.J., Robertson, I.M. and Birnbaum, H.K., Mater. Sci. Forum, 93 (1996).Google Scholar
23.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K., Acta Mater. 46, 1749 (1998).Google Scholar
24.Oriani, R.A., in A review of proposed mechanisms for hydrogen-assisted cracking in metals, Philadelphia, Pa., USA. 29 May - 1 June 1973., 1973.Google Scholar
25.Oriani, R.A., Corrosion 43, 390 (1987).Google Scholar
26.Beachem, C.D., Metall. Trans. A 3, 437 (1972).Google Scholar
27.Lynch, S.P., Scr. Metall. 13, 1051 (1979).Google Scholar
28.Xiao, H., Ph.D. Thesis, University of Illinois, 1993.Google Scholar
29.Teter, D., Ph.D. Thesis, University of Illinois, 1996.Google Scholar
30.Lillig, D., Unpublished work, University of Illinois, 1999.Google Scholar
31.Robertson, I. M., Unpublished work, University of Illinois, 1999.Google Scholar
32.Sirois, E. and Birnbaum, H.K., Acta Metall. 40, 1377 (1992).Google Scholar
33.Sofronis, P. and Birnbaum, H.K., Fatigue and Fracture of Aerospace Structural Materials American Society of Mechanical Engineers, Aerospace Division 36, 15 (1993).Google Scholar
34.Ulmer, D.G. and Altstetter, C.J., Acta Met. et Mat. 39, 1237 (1991).Google Scholar
35.Abraham, D.P. and Altstetter, C.J., Metallurgical and Materials Transactions 26A, 2859 (1995).Google Scholar
36.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K., Acta Mat. 47, 2991 (1999).Google Scholar
37.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K., Materials Science Forum, 93, 2091, (1996).Google Scholar