Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T04:44:56.989Z Has data issue: false hasContentIssue false

Controlled Cleavage of Fully-Condensed Silsesquioxane Frameworks: A Revolutionary New Method for Manufacturing Precursors to Hybrid Inorganic/Organic Materials

Published online by Cambridge University Press:  10 February 2011

Frank J. Feher
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92697–2025, [email protected]
Daravong Soulivong
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92697–2025, [email protected]
Get access

Abstract

The reaction of readily available Cy8Si8O12 (3) with triflic acid (TfOH) can produce two different ditriflates derived from controlled cleavage of Si-O-Si linkages. These ditriflates can be subsequently hydrolyzed to four different incompletely condensed silsesquioxanes, which are attractive precursors to hybrid inorganic/organic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lichtenhan, J. D., in Polymeric Material Encyclopedia Salamone, J. C., Ed. (CRC Press, New York, 1996), vol. 10, pp. 77687778.Google Scholar
2. Lichtenhan, J. D., Comments Inorg. Chem. 17, 115130 (1995).10.1080/02603599508035785Google Scholar
3. Tsuchida, A., Bolln, C., Sernetz, F. G., Frey, H., Mulhaupt, R., Macromolecules 30, 28182824 (1997).10.1021/ma960846gGoogle Scholar
4. Sellinger, A., Laine, R. M., Chem. Mater. 8, 15921593 (1996).10.1021/cm9601493Google Scholar
5. Hasegawa, I., J. Sol-Gel Sci. Tech. 5, 93100 (1995).10.1007/BF00487725Google Scholar
6. Crivello, J. V., Malik, R., J. Polym. Sci., Part A: Polym. Chem. 35, 407425 (1997).10.1002/(SICI)1099-0518(199702)35:3<407::AID-POLA3>3.0.CO;2-P3.0.CO;2-P>Google Scholar
7. Agaskar, P. A., Coll. Surf. 63, 131138 (1992).10.1016/0166-6622(92)80079-HGoogle Scholar
8. Hoebbel, D., Pitsch, I., Reiher, T., Hiller, W., Jancke, H., Muller, D., Z. Anorg. Allg. Chem. 576, 160168 (1989).10.1002/zaac.19895760118Google Scholar
9. Voronkov, M. G., Lavrent'ev, V., Top. Curr. Chem. 102, 199236 (1982).10.1007/3-540-11345-2_12Google Scholar
10. Brown, J. F., Vogt, L. H., J. Am. Chem. Soc. 87, 43134317 (1965)10.1021/ja00947a016Google Scholar
11. Feher, F. J., Budzichowski, T. A., J. Organomet. Chem. 373, 153163 (1989).10.1016/0022-328X(89)85041-7Google Scholar
12. Brown, J. F., J. Am. Chem. Soc. 87, 43174324 (1965).10.1021/ja00947a017Google Scholar
13. Frye, C. L. in Inorganic Reactions and Methods; edited by Hagan, A. P., VCH, Deerfield Beach, FL, 1986, Vol 17, pp 105116.Google Scholar
14. Feher, F. J., Soulivong, D., Eklund, A. G., Chem. Commun. 399400 (1998).10.1039/a707061fGoogle Scholar
15. Feher, F. J., Soulivong, D., Lewis, G. T., J. Am. Chem. Soc. 119, 11323–24 (1997).10.1021/ja972436tGoogle Scholar
16. Feher, F. J., Phillips, S. H., Ziller, J. W., J. Am. Chem. Soc. 119, 33973398 (1997).10.1021/ja963904mGoogle Scholar
17. Feher, F. J., Soulivong, D., Nguyen, F., Ziller, J. W., Angew. Chem., Int. Ed., Engl. (submitted)Google Scholar
18. Feher, F. J., Soulivong, D., Nguyen, F., Chem. Commun. 1279–80 (1998)10.1039/a802670jGoogle Scholar
19. Lichtenhan, J. D., Vu, N. Q., Carter, J. A., Gilman, J. W., Feher, F. J., Macromolecules 12, 21412142 (1993)10.1021/ma00060a053Google Scholar
20. Lichtenhan, J. D., Noel, C. J., Bolf, A. G., Ruth, P. N., Materials Res. Soc. Proc. 435, 311 (1996)10.1557/PROC-435-3Google Scholar