Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:50:11.188Z Has data issue: false hasContentIssue false

Control Over Al2O3 Phase by Use Of Polymer Precursors

Published online by Cambridge University Press:  25 February 2011

Werner Hesse
Affiliation:
Department of Chemistry and Materlals Research and Technology Center, The Florida State University, Tallahassee, Florida 32306-30S, U.S.A
Get access

Abstract

Reaction of Et2AIOEt with ethylene glycol or catechol produced polymers of the general form -[-AI(OEt)-O-R-O-]-n, for R = CH2CH2 or C6H4, respectively. Pyrolytic conversion of these polymers to ceramic materials produced A12O3, at mild (∼500°C) temperatures under a flowing atmosphere of dry air. The crystal phase obtained from the thermolysis is highly dependent upon the degree of cross-linking present in the initial polymer. These results are discussed in terms of the required solid-state atomic reorganization necessary to proceed from polymer to ceramic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greenwood, N. N.; Earnshaw, A.Chemistry of the ElementsPergamon: New York; 1984.Google Scholar
2 MacZura, G.; Goodboy, K. P.; Koenig, J. J. “Aluminum Oxide” in “Kirk-Othmer Encyclopedia of Chemical Technology”, 3rd ed, Vol 2; Wiley: New York, 1978; pp 218244. 3. For example, “Saffil,” see facing p. 272 in ref. 1.Google Scholar
4. For recent reviews on preceramic polymers, see: a) Wynne, K. J.; Rice, R. W. Ann. Rev. Mater. Sci. 1984, 14, 297. b) Rice, R. W. Amer. Ceram. Soc. Bull. 1983, 62, 889. c) Seyferth, D. In Transformations of Organometallics Into Common and Exotic Materials: Design and Activation, Laine, R. M., Ed.; Nijhoff: Dordrecht, 1988; pp. 133-154. d) Seyferth, D.; Wiseman, G. H.; Schwark, J. M.; Yu, Y.-F.; Poutasse, C. A. In Inorganic and Organometallic Polymers (ACS Symp. Series 360), Zeldin, M.; Wynne, K. J.; AIlcock, H. R., Eds.; Am. Chem. Soc.: Washington, D. C., 1988; pp. 143-155. e) Seyferth, D.; Yu, Y.-F. In Design of New Materials, Cocke, D. L.; Clearfield, A., Eds.; Plenum: New York, 1987; pp. 79-94. f) Seyferth, D. In Inorganic and Organometallic Polymers (ACS Symp. Series 360), Zeldin, M.; Wynne, K. J.; Allcock, H. R., Eds.; Am. Chem. Soc.: Washington, D. C., 1988; pp. 21-42.CrossRefGoogle Scholar
5. For recent reviews of ceramic composites, see: a) English, L. K. Materials Engineering 1987 (9), 15. b) Stacey, M. H. Madl. Sci. Tech. 1988, 4, 227. c) East, W. R. Materials Engineering 1988 (3), 33. d) Kubel, Jr., E. J. Advanced Materials Processes 1988, 8, 25.Google Scholar
6. a) Rees, W. S. Jr., Hesse, W., in “Chemical Perspectives of Microelectronic Materials II,” Interrante, L. V., Jensen, K. F., DuBois, L. H., Gross, M. E., Eds., Materials Research Society Symposium Proceedings, Volume 204; Materials Research Society: Pittsburgh, Pennsylvania, 1991, pp. 563570. b) W. S. Rees, Jr., W. Hesse, Polymer Preprints, 1991, 32 (3), pp. 573-574.Google Scholar