Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T03:35:13.839Z Has data issue: false hasContentIssue false

Control of the Morphology of the Layered-Silicate Epoxy Nanocomposite

Published online by Cambridge University Press:  01 February 2011

Chenggang Chen
Affiliation:
University of Dayton Research Institute, 300 College Park, Dayton, OH 45469–0168, USA Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA
Tia Benson Tolle
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA
Get access

Abstract

Polymer layered-silicate nanocomposites have attracted great attention due to their unique nanostructure and properties. The property of the nanocomposite is determined by the morphology of the nanocomposite. The typical morphologies of the nanocomposite are the intercalated and exfoliated nanostructures. In this study, the layered-silicate epoxy nanocomposite with different morphology can be controlled and achieved. The different morphology could include the intercalated nanostructure with the 15 Å increase of the interplanar spacing, the intercalated one with ∼150 Å increase of the gallery and fully exfoliated nanostructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. LeBaron, P. C., Wang, Z., Pinnavaia, T. J., Appl. Clay Sci. 15, 11 (1999).Google Scholar
2. Alexandre, M., Dubois, P., Mater. Sci. and Eng.: R. Rep. 28, 1 (2000).Google Scholar
3. Pinnavaia, T. J., Beall, G. W., Polymer-Clay Nanocomposites, John Wiley & Sons, Ltd.: Chichester, UK, 2000.Google Scholar
4. Chen, C., Curliss, D., SAMPE J. 37(5), 5 (2001).Google Scholar
5. Chen, C., Curliss, D., J. Appl. Polym. Sci. 90, 2276 (2003).Google Scholar
6. Chen, C., BensonTolle, T., J. Polym. Sci. B. Polym. Phys. in press, (2004).Google Scholar
7. Lan, T., Pinnavaia, T. J., Chem. Mater. 6, 2216 (1994).Google Scholar
8. Lan, T., Kavirayna, P. D., Pinnavaia, T. J., Chem. Mater. 7, 2144 (1995).Google Scholar
9. Lan, T., Kavirayna, P. D., Pinnavaia, T. J., J. Phys. Chem. Solids 57, 1005, (1996).Google Scholar
10. Zilg, C., Thomann, R., Finter, J., Mulhaupt, R., Macromol. Mater. Eng. 280/281, 41 (2000).Google Scholar
11. Kornmann, X., Lindberg, H., Berglund, L., Polymer 42, 1303 (2001).Google Scholar
12. Chin, I. J., Thurn-Albrecht, T., Kim, H. C., Russell, T. P., Wang, J., Polymer 42, 5947 (2001).Google Scholar
13. Chen, J. S., Poliks, M.D., Ober, C. K., Zhang, Y., Wiesner, U., Giannelis, E. P., Polymer 43, 4895 (2002).Google Scholar
14. Benson Tolle, T., Anderson, D. P., Com. Sci. and Tech. 62, 1033 (2002).Google Scholar
15. Kong, D., Park, C. E., Chem. Mater. 15, 419 (2003).Google Scholar