Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:49:15.030Z Has data issue: false hasContentIssue false

Control of Stress with Growth Conditions and Mechanical Parameters Determination of 3C-SiC Heteroepitaxial Thin Films

Published online by Cambridge University Press:  17 March 2011

C. Gourbeyre
Affiliation:
Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France
T. Chassagne
Affiliation:
Lab. Multimatériaux et Interfaces, UMR CNRS 5615, U.C.B. Lyon 1, Bat. 731 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
M. Le Berre
Affiliation:
Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France
G. Ferro
Affiliation:
Lab. Multimatériaux et Interfaces, UMR CNRS 5615, U.C.B. Lyon 1, Bat. 731 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
C. Malhaire
Affiliation:
Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France
Y. Monteil
Affiliation:
Lab. Multimatériaux et Interfaces, UMR CNRS 5615, U.C.B. Lyon 1, Bat. 731 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
D. Barbier
Affiliation:
Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France
Get access

Abstract

We report here on the influence of the epitaxial growth conditions on the residual stress of heteroepitaxial 3C-SiC grown on silicon using atmospheric-pressure chemical vapour deposition (APCVD) and on the determination of its mechanical properties. 3C-SiC films were grown on (100) Si substrates in a vertical reactor by APCVD. SiH4 and C3H8 are used as precursor gases and H2 as carrier gas. The growth procedure involves the formation of a carburization buffer layer at 1150°C under a mixture of H 2 and C3H8. The epitaxial growth occurs then at 1350°C by adding SiH 4.

For as-deposited films the measurement techniques implemented are substrate curvature measurements, AFM, and nano-indentation. For micromachined self-suspended SiC membranes, load deflection measurements were used. The substrate curvature measurement leads to the determination of the residual stress in the deposited SiC film. We show that we can achieve 3C-SiC layers with a compressive or a tensile state having equivalent crystallinity. Whereas thermal mismatch just accounts for tensile stresses, we demonstrate that 3C-SiC thin films may have compressive stresses by using specific conditions for the formation of the buffer layer. The early stage of growth is indeed of major importance.

Regarding the mechanical properties, the 3C-SiC Young's modulus was determined using nano-indentation. Its mean value reaches 378 GPa comparable to the calculated value of 307 GPa. As test structures, we have processed self-suspended SiC membranes. Load deflection measurements enable the determination of the Young's modulus and the residual stress of the self-suspended films. For self-suspended SiC membranes, the absolute value of the residual stress in the SiC thin films decreases compared to the as-deposited films and takes a mean value of 170 MPa in a tensile state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carter, G., Casady, J. B., Okhuysen, M., Scofield, J. D., Saddow, S. E.. International Conference on SiC and Related Materials (ICSCRM), Oct 10-15, 1999, Raleigh, NC, USA, Google Scholar
2. Ferro, G., Monteil, Y., Thevenot, V., Vincent, H., Cauwet, F., Duc, Tran Min, Bouix, J., J. Appl. Phys. 80, p. 4691 (1996)Google Scholar
3. Malhaire, C., Thèse de Doctorat, INSA Lyon, 1998, 202p.Google Scholar
4. Veprek, S., Kunstman, T., Volm, D., Meyer, B. K., J. Vac. Sci. Technol. A15 (1) p. 10 (1997)Google Scholar
5. Kordina, O., Bjorketun, L. O., Henry, A., Hallin, C., Hallin, R. C., Glaas, R. C., Hultman, L., Sundgren, J. E., Janzen, E., J. Crystal. Growth 154, p. 303 (1995)Google Scholar
6. Li, Z., Bradt, R. C., J. Mat. Sci., 21 p 43664368 (1986)Google Scholar
7. Lee, D. H., Joannopoulos, J. D., Phys. Rev. Lett., 48 (26), p18421849 (1982)Google Scholar
8. Gourbeyre, C., Aboughe-nze, P., Malhaire, C., Berre, M. Le, Monteil, Y., Barbier, D., Mat. Res. Soc. Symp. Proc. 546, p. 9196 (1998).Google Scholar
9. Berg, J. von et al. , HiTEC, June 9-14, 1996, Albuquerque, NM, USA, p.5157 Google Scholar
10. Maier-Schneider, D., Maibach, J., Obermeier, E., J. of Microelec. Syst., 4, p. 238241 (1995).Google Scholar
11. Mehregany, M., Tong, L., Matus, L. G., Larkin, D. J., IEEE Trans.Electron Dev. 44, p. 7479 (1997).Google Scholar