Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T22:59:00.730Z Has data issue: false hasContentIssue false

Control of Defects and Impurities in Production of CdZnTe Crystals by the Bridgman Method

Published online by Cambridge University Press:  10 February 2011

H. L. Glass
Affiliation:
Johnson Matthey Electronics, 15128 E. Euclid Ave., Spokane, WA 99216, [email protected]
A. J. Socha
Affiliation:
Johnson Matthey Electronics, 15128 E. Euclid Ave., Spokane, WA 99216, [email protected]
D. W. Bakken
Affiliation:
Johnson Matthey Electronics, 15128 E. Euclid Ave., Spokane, WA 99216, [email protected]
V. M. Speziale
Affiliation:
Johnson Matthey Electronics, 15128 E. Euclid Ave., Spokane, WA 99216, [email protected]
J. P. Flint
Affiliation:
Johnson Matthey Electronics, 15128 E. Euclid Ave., Spokane, WA 99216, [email protected]
Get access

Abstract

Cadmium zinc telluride crystals were grown by vertical Bridgman processes using in situ compounding from high purity elements into pyrolytic boron nitride crucibles within sealed fused quartz ampoules containing cadmium vapor at a pressure of roughly one atmosphere. These conditions produce material having the low etch pit density, low precipitate density, high infrared transmission and high purity required for use as substrates for infrared focal plane detector arrays fabricated in epitaxial mercury cadmium telluride. Similar processes should be satisfactory for producing cadmium zinc telluride for gamma ray detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zanio, K., Semiconductors and Semimetals, Vol.13, Academic Press, New York, 1978, pp. 1114.Google Scholar
2. Sen, S. and Stannard, J. E., Mat. Res. Soc. Symp. Proc. 302, p. 391 (1993).Google Scholar
3. Nakagawa, K., Maeda, K. and Takeuchi, S., Appl. Phys. Lett. 34, p. 574 (1979).Google Scholar
4. Sen, S., Liang, C. S., Riger, D. R., Stannard, J. E. and Arlinghaus, H. F., J. Electronic Materials 25, p. 1188 (1996).Google Scholar
5. Glass, H. L., Socha, A. J., Parfeniuk, C. L. and Bakken, D. W, Proceedings 8th International Conference on II-VI Compounds, Grenoble, August 1997, J. Crystal Growth, to be published.Google Scholar
6. Mitra, P., Tyan, Y. L., Case, F. C., Starr, R. and Reine, M. B., J. Electronic Materials 25, p. 1328 (1996).Google Scholar
7. Mitra, P., Barnes, S. L., Case, F. C., Reine, M. B., O'Dette, P., Starr, R., Hairston, A., Kuhler, K., Weiler, M. H. and Musicant, B. L., J. Electronic Materials 26, p. 482 (1997).Google Scholar