Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T06:33:44.976Z Has data issue: false hasContentIssue false

Contribution of Solvothermal Processes to the Synthesis of Novel Nitrides and the Development of Shaping Processes

Published online by Cambridge University Press:  01 February 2011

Gerard Demazeau
Affiliation:
[email protected], CNRS-University BORDEAUX1, ICMCB, 87 Avenue Dr. A. SChweitzer, PESSAC, 33608 Cedex, France, 33 5 40 00 83 58, 33 5 40 00 27 10
Graziella GOGLIO
Affiliation:
[email protected], CNRS-University BORDEAUX1, ICMCB, 87 Avenue Dr. A. SChweitzer, PESSAC, 33608 Cedex, France
Alain LARGETEAU
Affiliation:
[email protected], CNRS-University BORDEAUX1, ICMCB, 87 Avenue Dr. A. SChweitzer, PESSAC, 33608 Cedex, France
Get access

Abstract

Solvothermal processes can be described as the reaction or the decomposition of precursor(s) in presence of a solvent in a close system at a temperature higher than the solvent boiling point. Consequently pressure parameter is involved. Such processes are mainly managed by two sets of parameters: (i) thermodynamical parameters and (ii) chemical parameters.

Solvothermal processes concern either supercritical or subcritical conditions, -homogeneous or heterogeneous systems, and thermodynamical parameters (P and T) play an important role. The main interest of solvothermal reactions is the improvement of the chemical reactivity, and in such a case the nature of the reagents and the physico-chemical properties of the solvent are important.

For the last 20 years, solvothermal processes have been developed in different research areas, such as:

- synthesis of new compounds (including in particular hybride systems),

- crystal growth of functional materials,

- preparation of nanocrystallites with well defined size and morphology,

- deposition of thin films,

- sintering in mild temperature conditions.

In particular, solvothermal reactions involve nitrides and derived materials either for preparing new compositions or shaping functional nitrides (single crystals, nanoparticles…).

In a first approach the synthesis of nitrides using solvothermal reactions will be described versus the nature of the precursors and the composition of the solvent. The nitriding process will be analyzed versus the chemical species, in particular N3−, N3−…Different illustrations will be described (transition metal nitrides, light elements-based nitrides…).

The second part will be devoted to the development of solvothermal processes for the preparation of single crystals or nanocrystallites.

As a conclusion, the potential developments of solvothermal nitriding processes either in basic research or industrial applications will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lowther, J. E., Amkreutz, M., Frauenheim, T., Kroke, A., Riedel, R., Phys. Rev. B. 68 (2003) 033201.Google Scholar
[2] Mukasyan, A., Proceedings of the Combustion Institute 30 (2005) 2529.Google Scholar
[3] Hector, A. L., Henshaw, G., Komarov, A. V., Parkin, I. P., J. Mater. Processing Technol. 77 (1998) 103.Google Scholar
[4] Gomathi, A., Mater. Res. Bull. 42 (2007) 870.Google Scholar
[5] Horvath-Bordon, E., Riedel, R., Zerr, A., Millan, P. F. Mc, Auffermann, G., Prots, Y., Bronger, W., Kniep, R., Kroll, P., Chem. Soc. Rev. 35 (2006) 987.10.1039/b517778mGoogle Scholar
[6] Demazeau, G., Goglio, G., Denis, A., Largeteau, A., J. Phys.: Condens. Matter 14 (2002) 11085.Google Scholar
[7] Zerr, A., Miehe, G., Riedel, R., Nat. Mater 2 (2003) 185.Google Scholar
[8] Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. K., Hemley, R.J., Nat. Mater. 3 (2004) 294.Google Scholar
[9] Hasegawa, M., Yagi, T., J. Alloys Compd 224 (1995) 232.Google Scholar
[10] Demazeau, G., Z. Naturforsch. B 61 b (2006) 799.Google Scholar
[11] Demazeau, G., J. Mater. Science (online) DOI 10.1007/s10853-007-2024-9.Google Scholar
[12] Zou, G., LI, H., Zang, Y., Xiong, K., Qian, Y., Nanotechnology 17 (2006) S.313.10.1088/0957-4484/17/11/S14Google Scholar
[13] Wang, B., Callahan, M. J., J. Cryst. Growth 291 (2006) 455.10.1016/j.jcrysgro.2006.03.035Google Scholar
[14] Scotti, N., Kockelmann, W., Senker, J., Trassel, St, Jacobs, H., Z. Anorg.Allg. Chem. 625 (1999) 1435.Google Scholar
[15] Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., Courjault, S., J. Mater. Sci. 35 (2000) 2547.Google Scholar
[16] Sardar, K., Rao, C. N. R., Solid State Sciences 7 (2005) 217.Google Scholar
[17] Xie, Y., Qian, Y., Wang, W., Zhang, S., Zhang, Y., Science 272 (1996) 1926.Google Scholar
[18] Zou, G. F., Hu, B., Xiong, K., Li, H., Dong, C., Liang, J. B., Qian, Y., Appl. Phys. Lett. 86 (2005) 181901.Google Scholar
[19] Cai, P., Yang, Z., Wang, C., Xia, P., Qian, Y., Mater. Lett. 60 (2006) 410.Google Scholar
[20] Grocholl, L., Wang, J., Gillan, E. G., Chemistry of Materials 13 (2001) 4290.Google Scholar
[21] Cohen, M. L., Phys. Rev. B 32 (1985) 7988.10.1103/PhysRevB.32.7988Google Scholar
[22] Liu, A. Y., Cohen, M. L., Science 245 (1989) 841.Google Scholar
[23] Teter, D. M., Hemley, R. J., Science 271 (1996) 53.Google Scholar
[24] Montigaud, H., Tanguy, B., Demazeau, G., Courjault, S., Birot, M., Dunogues, J., C.R. Acad. Sci. Paris 325 IIb (1997) 229.Google Scholar
[25] Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., Birot, M., Dunogues, J., Diamond and Related Materials 8 (1999) 1707.Google Scholar
[26] Wang, A., Capitain, F., Monnier, V., Matar, S., Demazeau, G., J. Mater. Synthesis and Processing 5 (1997) 235.Google Scholar
[27] Cao, C. B., Lv, Q., Zhu, H. S., Diamond Relat. Mater. 12 (2003) 1070.Google Scholar
[28] Lv, Q., Cao, C. B., Li, C., Zhang, J.T., Zhu, H. S., Kong, X., Duan, X. F., J. Mater. Chem. 13 (2003) 1241.Google Scholar
[29] Guo, Q., Xie, Y., Wang, X., Zhang, S., T. Hou, Lv, S., Chem. Commun. 1 (2004) 26.10.1039/b311390fGoogle Scholar
[30] Guo, Q., Xie, Y., Wang, X., Lv, S., Hou, T., Liu, X., Chem. Phys. Lett. 380 (2003) 84.Google Scholar
[31] Mu, T., Huang, J., Liu, Z., Han, B., Li, Z., Wang, Y., Jiang, T., Gao, H. X., J. Mater. Res. 19 (2004) 1736.Google Scholar
[32] Goglio, G., Foy, D., Demazeau, G., Mater. Sci. Eng. R. 58 (2008) 195.10.1016/j.mser.2007.10.001Google Scholar
[33] Choi, J., Gillan, E. G., J. Mater. Chem. 16 (2006) 3774.10.1039/B608204AGoogle Scholar
[34] Denis, A., Goglio, G., Demazeau, G., Mater. Sci. Eng. R. 50 (2006) 167.Google Scholar
[35] Demazeau, G., Lafon, F., Curtet, J., Largeteau, A., High Pressure Research 12 (1994) 329.Google Scholar
[36] Yoshihawa, A., Ohshima, E., Fukuda, T., Tsuji, H., Oshima, K., J. Crystal Growth 260 (2004) 67.Google Scholar
[37] Wang, B., Callahan, M. J., J. Crystal Growth 291 (2006) 455.10.1016/j.jcrysgro.2006.03.035Google Scholar
[38] Kagamitani, Y., Ehrentraut, D., Yoshikawa, A., Hoshino, N., Fukuda, T., Kawabata, S., Inaba, K., Jpn. J. Appl. Phys. 45 (2006) 4018.Google Scholar
[39] Hashimoto, T., Saito, M., Fujito, K., Wu, F., Speck, J.S., Nakamura, S., J. Crystal Growth 305 (2007) 311.Google Scholar
[40] Fukuda, T., Ehrentraut, D., J. Crystal Growth 305, (2007) 304 10.1016/j.jcrysgro.2007.04.010Google Scholar
[41] Vel, L., Demazeau, G., Etourneau, J., Mater. Sci. Engineer. Solid State Mater. For Adv. Technol. B10 (1991) 149.10.1016/0921-5107(91)90121-BGoogle Scholar
[42] Bundy, F. P., Wentorf, R. H., J. Chem. Phys. 84 (1963) 4619.Google Scholar
[43] Solozhenko, V. L., Properties of Groupe III nitrides INSPEC. London (1994) 59.Google Scholar
[44] Maki, J., Ikawa, H., Fukunaga, O. in R. Messier, Glass, J. T., Butler, J. E., Roy, R. (Eds.), New Diamond and Technology MRS (1991) 1051.Google Scholar
[45] Fukunaga, O., Proc. AIRAPT 16 and HPCJ. 38 Conf. KYOTO (1997) 164.Google Scholar
[46] Fukunaga, O., Diamond and Related Materials 9 (2000) 7.Google Scholar
[47] Hao, X. P., Cui, D. L., Shi, G. X., Yin, Y. Q., Xu, X. G., Wang, J. Y., Jiang, M. H., Xu, X. W., Li, Y. P., and Sun, B. Q., Chemistry of Material 13(8) (2001) 2457.10.1021/cm010079mGoogle Scholar
[48] Hao, X., Yu, M., Cui, D., Xu, X., Wang, Q., Jiang, M., J. Crystal Growth 241 (2002) 124.10.1016/S0022-0248(02)01291-5Google Scholar
[49] Dong, S., Hao, X., Xu, X., Cui, D., Jiang, M., Mater. Letters 58 (2004) 2791.10.1016/j.matlet.2004.04.022Google Scholar
[50] Hao, X., Zhan, J., Fang, W., Cui, D., Xu, X., Jiang, M., J. Crystal Growth 270 (2004) 192.Google Scholar
[51] Korablov, S., Yokosawa, K., Korablov, D., Tohji, K., Yamasaki, N., Mater. Letters 60 (2006) 3041 10.1016/j.matlet.2005.07.092Google Scholar
[52] Fukuda, T., Ehrentraut, D., J. Crystal Growth 305 (2007) 304.10.1016/j.jcrysgro.2007.04.010Google Scholar