Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T15:31:06.470Z Has data issue: false hasContentIssue false

Contact Effects in High Mobility Microcrystalline Silicon Thin-Film Transistors

Published online by Cambridge University Press:  01 February 2011

Kah Yoong Chan
Affiliation:
[email protected], Jacobs University Bremen, School of Engineering and Science, Research Center Jülich, Institute of Photovoltaics, 52425 Juelich, Germany, Juelich, 52425, Germany, +49-2461-61-2069, +49-2461-61-3735
Eerke Bunte
Affiliation:
[email protected], Research Center Jülich, Institute of Photovoltaics, Jülich, 52425, Germany
Helmut Stiebig
Affiliation:
[email protected], Research Center Jülich, Institute of Photovoltaics, Jülich, 52425, Germany
Dietmar Knipp
Affiliation:
[email protected], Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, Bremen, 28759, Germany
Get access

Abstract

Microcrystalline silicon (mc-Si:H) has recently been proven to be a promising material for thin-film transistors (TFTs). We present mc-Si:H TFTs fabricated by plasma-enhanced chemical vapor deposition at temperatures below 200°C in a condition similar to the fabrication of amorphous silicon TFTs. The mc-Si:H TFTs exhibit device mobilities exceeding 30 cm2/Vs and threshold voltages in the range of 2.5V. Such high mobilities are observed for long channel devices (50-200 mm). For short channel device (2 mm), the mobility reduces to 7 cm2/Vs. Furthermore the threshold voltage of the TFTs decreases with decreasing channel length. A simple model is developed, which explains the observed reduction of the device mobility and threshold voltage with decreasing channel length by the influence of drain and source contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tsukada, T., Technology and Applications of Amorphous Silicon, Springer Series in Material Science, 37, edited by Street, R. A. (Springer-Verlag, Berlin, Germany, 2000).Google Scholar
2 French, I. D., Deane, S. C. and Cabarrocas, P. R. I., Asia Display, IDW'01, 367 (2001).Google Scholar
3 Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).Google Scholar
4 Kelley, T. W., Baude, P. F., Gerlach, C., Ender, D. E., Muyres, D., Haase, M. A., Vogel, D. E. and Theiss, S. D., Chem. Mater. 16, 4413 (2004).Google Scholar
5 Knipp, D., Muck, T., Benor, A. and Wagner, V., J. of Non-Cryst. Solids 352, 1774 (2006).Google Scholar
6 Cheng, I.-C. and Wagner, S., Appl. Phys. Lett. 80, 440 (2002).Google Scholar
7 Lee, C.-H., Sazonov, A. and Nathan, A., Appl. Phys. Lett. 86, 222106 (2005).Google Scholar
8 Saboundji, A., Coulon, N., Gorin, A., Lhermite, H., Mohammed-Brahim, T., Fonrodona, M., Bertomeu, J. and Andreu, J., Thin Solid Films 487, 227 (2005).Google Scholar
9 Guo, L., Kondo, M., Fukawa, M., Saitoh, K. and Matsuda, A., Jpn. J. Appl. Phys. 37, L1116 (1998).Google Scholar
10 Rech, B., Roschek, T., Repmann, T., Müller, J., Schmitz, R. and Appenzeller, W., Thin Solid Films 427, 157 (2003).Google Scholar
11 Brammer, T. and Stiebig, H., J. Appl. Phys. 94, 1035 (2003).Google Scholar
12 Jun, K.-H., Carius, R. and Stiebig, H., Physical Review B 66, 1153011 (2002).Google Scholar
13 Ma, Y., Yasuda, T. and Lucovsky, G., J. Vac. Sci. Technol. A 11, 952 (1993).Google Scholar
14 Hsieh, S. W., Chang, C. Y. and Hsu, S. C., J. Appl. Phys. 74, 2638 (1993).Google Scholar
15 Chan, K.-Y., Bunte, E., Stiebig, H. and Knipp, D., J. Appl. Phys. 101, 074503 (2007).Google Scholar
16 Luan, S. and Neudeck, G. W., J. Appl. Phys. 72, 766 (1992).Google Scholar