Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:45:44.576Z Has data issue: false hasContentIssue false

Constrained Diffusional Creep in Thin Copper Films

Published online by Cambridge University Press:  18 March 2011

D. Weiss
Affiliation:
Max-Planck-Institut für Metallforschung andInstitut für Metallkunde der Universität, Seestr. 92, D-70174 Stuttgart, Germany
H. Gao
Affiliation:
Max-Planck-Institut für Metallforschung andInstitut für Metallkunde der Universität, Seestr. 92, D-70174 Stuttgart, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung andInstitut für Metallkunde der Universität, Seestr. 92, D-70174 Stuttgart, Germany
Get access

Abstract

The mechanical properties of thin metal films have been investigated for many years. How- ever, the underlying mechanisms are still not fully understood. In this paper we give an overview of our work on thermomechanical properties and microstructure evolution in pure Cu and dilute Cu-Al alloy films. Very clean films were produced by sputtering and annealing under ultra-high vacuum (UHV) conditions. We described stress-temperature curves of pure Cu films with a constrained diffusional creep model from the literature. In Cu-1at.%Al alloy films, Al surface segregation and oxidation led to a “self-passivating” effect. These films showed an increased high- temperature strength because of the suppression of constrained diffusional creep; however, under certain annealing conditions, these films deteriorated due to void growth at grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nix, W. D., Metall. Trans. A 20A, 2217–45 (1989).Google Scholar
2. Arzt, E., Acta Mater. 46, 5611–26 (1998).Google Scholar
3. Thouless, M. D., Rodbell, K. P., and Cabral, C. J., J. Vac. Sci. Tech. A 14, 2454–61 (1996).Google Scholar
4. Weiss, D., PhD Thesis, Universität Stuttgart (2000).Google Scholar
5. Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electr. Dev. ED–34, 689–99 (1987).Google Scholar
6. Keller, R.-M., Baker, S. P., and Arzt, E., J. Mater. Res. 13, 1307–17 (1998).Google Scholar
7. Joo, Y.-C., Müllner, P., Baker, S. P., and Arzt, E., MRS Symp. Proc. Vol. 473, (Philadelphia, PA, 1997), p. 409–14.Google Scholar
8. Li, J., Mayer, J. W., and Colgan, E. G., J. Appl. Phys. 70, 2820–7 (1991).Google Scholar
9. Gibbs, G. B., Phil. Mag. 13, 589–93 (1966).Google Scholar
10. Jackson, M. S. and Li, C.-Y., Acta Met. 30, 19932000 (1982).Google Scholar
11. Thouless, M. D., Acta Met. 41, 1057–64 (1993).Google Scholar
12. Kobrinsky, M. J. and Thompson, C. V., Appl. Phys. Lett. 73, 2429–31 (1998).Google Scholar
13. Gao, H., Zhang, L., Nix, W. D., Thompson, C. V., and Arzt, E., Acta mater. 47, 2865–78 (1999).Google Scholar
14. Vinci, R. P., Zielinski, E. M., and Bravman, J. C., Thin Solid Films 262, 142–53 (1995).Google Scholar
15. Dalbec, T. R., Leung, O. S., and Nix, W. D., in Deformation, Processing, and Properties of Structural Materials, edited by Taleff, E. M., Syn, C. K., and Lesuer, D. R. (The Minerals, Metals & Materials Society, 2000), p. 95108.Google Scholar
16. Weiss, D., Gao, H., and Arzt, E., Acta mater., in press (2001).Google Scholar
17. Weiss, D., Kraft, O., and Arzt, E., Appl. Phys. Lett., submitted (2001).Google Scholar
18. Cocks, A. C. F. and Ashby, M. F., Progr. Mat. Sci. 27, 189244 (1982).Google Scholar