No CrossRef data available.
Article contents
Conjugated porous Polymers as Highly Efficient Heterogeneous Visible Light Photocatalyst
Published online by Cambridge University Press: 04 June 2015
Abstract
Π-conjugated porous polymers with hierarchical pore structures were synthesized via high internal phase emulsion polymerization (polyHIPE) technique. The polymers could be used as heterogeneous photocatalysts for highly selective oxidation of organic sulfides into sulfoxides and the free radical polymerization of methyl methacrylate (MMA) under visible light irradiation.
Keywords
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1784: Symposium R – Photoactive Nanoparticles and Nanostructures , 2015 , mrss15-2089773
- Copyright
- Copyright © Materials Research Society 2015
References
REFERENCES
Mizuno, N. and Misono, M.,
Heterogenous catalysis
. Chemical Reviews, 1998. 98(1): p. 199–217.CrossRefGoogle Scholar
Cooper, A.I.,
Conjugated Microporous Polymers
. Advanced Materials, 2009. 21(12): p. 1291–1295.CrossRefGoogle Scholar
Chen, Y., et al. ,
Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light
. Chemical Science, 2013. 4(8): p. 3244–3248.CrossRefGoogle Scholar
Bokhari, M., et al. ,
Novel cell culture device enabling three-dimensional cell growth and improved cell function
. Biochemical and Biophysical Research Communications, 2007. 354(4): p. 1095–1100.CrossRefGoogle ScholarPubMed
Dizge, N., Keskinler, B., and Tanriseven, A.,
Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde
. Colloids and Surfaces B-Biointerfaces, 2008. 66(1): p. 34–38.CrossRefGoogle ScholarPubMed
Pierre, S.J., et al. ,
Covalent enzyme immobilization onto photopolymerized highly porous monoliths
. Advanced Materials, 2006. 18(14): p. 1822–1826.CrossRefGoogle Scholar
Padwa, A., Bullock, W.H., and Dyszlewski, A.D.,
Studies Dealing with the Alkylation [1,3]-Rearrangement Reaction of Some Phenylthio-Substituted Allylic Sulfones
. Journal of Organic Chemistry, 1990. 55(3): p. 955–964.CrossRefGoogle Scholar
Fernandez, I. and Khiar, N.,
Recent developments in the synthesis and utilization of chiral sulfoxides
. Chemical Reviews, 2003. 103(9): p. 3651–3705.CrossRefGoogle ScholarPubMed
Bäckvall, J.-E., Modern oxidation methods. 2nd, completely rev. and enlarged ed. 2010, Weinheim, Germany: Wiley-VCH. xv, 465 p.CrossRefGoogle Scholar
Kaczorowska, K., et al. ,
Oxidation of sulfides to sulfoxides. Part 2: Oxidation by hydrogen peroxide
. Tetrahedron, 2005. 61(35): p. 8315–8327.CrossRefGoogle Scholar
Perles, J., et al. ,
Rare-earths as catalytic centres in organo-inorganic polymeric frameworks
. Journal of Materials Chemistry, 2004. 14(17): p. 2683–2689.CrossRefGoogle Scholar
Perles, J., et al. ,
Metal-organic scandium framework: Useful material for hydrogen storage and catalysis
. Chemistry of Materials, 2005. 17(23): p. 5837–5842.CrossRefGoogle Scholar
Dybtsev, D.N., et al. , Angewandte Chemie-International Edition, 2006. 45(6): p. 916–920.CrossRefGoogle Scholar
Chen, L., Yang, Y., and Jiang, D.L.,
CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers
. Journal of the American Chemical Society, 2010. 132(26): p. 9138–9143.CrossRefGoogle ScholarPubMed
Marin, M.L., et al. ,
Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds
. Chemical Reviews, 2012. 112(3): p. 1710–1750.CrossRefGoogle ScholarPubMed
Neumann, M., et al. ,
Metal-Free, Cooperative Asymmetric Organophotoredox Catalysis with Visible Light
. Angewandte Chemie-International Edition, 2011. 50(4): p. 951–954.CrossRefGoogle ScholarPubMed
Lalevee, J., et al. ,
Iridium Photocatalysts in Free Radical Photopolymerization under Visible Lights
. Acs Macro Letters, 2012. 1(2): p. 286–290.CrossRefGoogle Scholar
Jockusch, S., et al. ,
Photoinduced energy and electron transfer between ketone triplets and organic dyes
. Journal of Physical Chemistry A, 1997. 101(4): p. 440–445.CrossRefGoogle Scholar
Ganster, B., et al. ,
New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing
. Macromolecules, 2008. 41(7): p. 2394–2400.CrossRefGoogle Scholar
Moszner, N., et al. ,
Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials
. Dental Materials, 2008. 24(7): p. 901–907.CrossRefGoogle ScholarPubMed
Jakubiak, J., et al. ,
Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization
. Polymer, 2003. 44(18): p. 5219–5226.CrossRefGoogle Scholar
Degirmenci, M., et al. ,
Photoinitiation of cationic polymerization by visible light activated titanocene in the presence of onium salts
. Polymer Bulletin, 2001. 46(6): p. 443–449.CrossRefGoogle Scholar
Jakubiak, J. and Rabek, J.F.,
Photoinitiators for visible light polymerization
. Polimery, 1999. 44(7-8): p. 447–461.CrossRefGoogle Scholar
Davidenko, N., Garcia, O., and Sastre, R., Journal of Biomaterials Science-Polymer Edition, 2003. 14(7): p. 733–746.CrossRefGoogle Scholar