Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:30:51.774Z Has data issue: false hasContentIssue false

Conjugated Polymers as Part of Multifunctional Organic/Inorganic Hybrid Materials for Photovoltaic Applications

Published online by Cambridge University Press:  17 March 2011

Monica Lira-Cantu
Affiliation:
Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2,CSIC), Escola Tecnica Superior d Enginyeria (ETSE), Campus UAB Edifici Q 2nd Floor, Barcleona, 08193, Spain
Frederik C. Krebs
Affiliation:
Technical University of Denmark, Risø-DTU, The Danish Polymer Centre, Frederiksborgvej 399 * P.O. 49, Roskilde, 4000, Denmark
Pedro Gomez-Romero
Affiliation:
Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2,CSIC), Escola Tecnica Superior d Enginyeria (ETSE), Campus UAB Edifici Q 2nd Floor, Barcleona, 08193, Spain
Shozo Yanagida
Affiliation:
Osaka University, Center for Advanced Science and Innovation, 2-1, Yamada-oka, Suita, Osaka Japan, Osaka, 565-0871, Japan
Get access

Abstract

The multifunctionality of hybrid organic-inorganic materials has been clearly demonstrated in recent years. Their application in solar- related devices is a growing research area with important technological implications. Our interest is centered on the interplay between the light-harvesting and hole-conducting properties of conjugated polymers and the wide band gap values observed from different inorganic semiconductor oxides. The materials applied in this work are the combination of semiconductor oxides like TiO2, ZnO, Nb2O5, CeO2 and TiO2-CeO2, and different conjugated polymers like poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) or poly(3,4-ethylenedioxythiophene) (PEDOT). Semiconductor oxides have been applied in different configurations like dense thin films, nanostructured electrodes or as nanoparticles. The conjugated polymers have been chosen depending on their light-harvesting properties (e.g. MEH-PPV) or due to their good electrical conductivity and hole conducting properties (e.g. PEDOT). We have characterized our devices in terms of Voc, Jsc, IV-curves, effect of different atmospheres and device lifetime under simulated sunlight irradiation. Tuning the different device parameters such as type of oxide applied, active layer thickness, starting materials concentration, effect of different atmospheres, effect of UV irradiation, etc., permit the fabrication of devices with well-defined properties. A brief discussion and comparison of hybrid solar cells (HSC) with solid-state Dye Sensitized Solar Cells (ss-DSC) applying nanocomposite materials based on TiO2 and PEDOT, as the electron and hole conducting materials respectively, is also included.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arango, A.C., Carter, S.A., Brock, P.J. PJ Appl. Phys. Let. 74, 1698 (1999).Google Scholar
2. Hal, P.A. van, Christiaans, M.P.T., Wienk, M.M., Kroon, J.M., Janssen, R.A.J.. J. Phys. Chem. B 103, 4352 (1999).Google Scholar
3. Breeze, A. J., Schlesinger, Z., Carter, S.A., Brock, P.J.. Phys. Rev. B 64, 125205 (2001).Google Scholar
4. Ravirajan, P., Bradley, D.D.C., Nelson, J., Haque, S.A., Durrant, J.R., Smit, H.J.P., Kroon, J.M.. Phys. Lett. 86(14), 143101 (2005).Google Scholar
5. Lira-Cantu, M. and Krebs, F.C.. Sol. Energ. Mater. Sol. Cells. 90, 2076 (2006).Google Scholar
6. Beek, W.J.E., Wienk, M.M., Janssen, R.A.J.. Adv. Mater. 16, 1009 (2004).Google Scholar
7. Kroeze, J.E., Savenije, T.J.. Thin Solid Films 451–452, 54 (2004).Google Scholar
8. Sanith, H.J., Zakeeruddin, S.M., Schmidt-Mende, L., Klein, C., Gratzel, M. Angew, M.. Chem. Int. Ed. 44, 6413 (2005).Google Scholar
9. Moser, J.E.. Nature Mat. 4, 723 (2005).Google Scholar
10. Lira-Cantu, M., Norrman, K., Andreasen, J. W. and Krebs, F. C.. Chem. Mater. 18, 56845690 (2006).Google Scholar
11. Lira-Cantu, M., Gomez-Romero, P.. In Functional Hybrid Materials, (Wiley-VCH, Weinheim 2004) p 210.Google Scholar
12. Lira-Cantu, M., Norrman, K., Andreasen, J. W., Casan-Pastor, N. and Krebs, F. C.. J Electrochem. Soc. 154 (6) B508–B513 (2007).Google Scholar
13. Saito, Y., Fukuri, N., Senadeera, G. K. R., Kitamura, T., Wada, Y., and Yanagida, S., Electrochem. Commun. 6, 71, 2004.Google Scholar
14. Fukuri, N., Masaki, N., Kitamura, T., Wada, Y., and Yanagida, S. J. Phys. Chem. B 110, 2525125258, 2006.Google Scholar
15. Mozer, A. J., Wada, Y., Jiang, K.-J., Masaki, N., Yanagida, S., Mori, S. N., Appl Phys. Lett. 89, 043509, 2006.Google Scholar
16. Kim, Y., Sung, Y.-E., Xia, J.-b., Lira-Cantu, M., Masaki, N., and Yanagida, S., J. Photochem. Photobio. A: Chemistry, 193 (2-3) 7780 (2008).Google Scholar
17. Ayllon, J.A., Lira-Cantu, M., Gomez-Romero, P. and Krebs, F.C.. Submitted.Google Scholar
18. Kang, S., Umeyama, T., Ueda, M., Matano, Y., Hotta, H., Yoshida, K., Isoda, s., Shiro, M., Imahori, H.. Adv. Mater. 18, 2549 (2006).Google Scholar
19. Xia, J., Masaki, N., Lira-Cantu, M., Kim, Y., Jiang, K., Yanagida, S.. J. Am. Chem. Soc. 2008. Accepted.Google Scholar