Article contents
Congruent and Incongruent Radionuclide Release During Matrix Dissolution of Partly Oxidized High Burnup Spent Fuel
Published online by Cambridge University Press: 21 March 2011
Abstract
With respect to the assessment of the long-term behavior of the waste form spent fuel it is of high importance to study in particular the UO2 matrix dissolution behavior and the associated release/retention of radionuclides in contact with groundwater. During long term fuel storage, fuel oxidation may not be avoided. Main issue of this work is to identify the impact on the corrosion of partly oxidized fuel of environmental conditions such as (1) the nature of solution contacting the matrix, the (2) presence/absence of CO2, (3) fixed pH values within a range between pH 7- pH 11, and (4) the presence/absence of corroding container material (Fe-powder). Dissolution tests with powdered oxidized spent fuel in various granite waters, and NaCl-brine resulted in matrix dissolution rates in the same order of magnitude for all investigated media (ca.5×10−4/d). The presence of CO2 and fixed pH values (pH 5 – 11) was without a distinct effect. The independence of the dissolution rate of the oxidized fuel matrix upon the nature of solution, pCO2, fixed pH values (5-11) can probably be explained by a masking effect of radiolysis. In presence of Fe powder the matrix dissolution rate was found to be slowed down by a factor of ca. 20, associated with strong retention effects of radionuclides.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
- 3
- Cited by