Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:26:15.801Z Has data issue: false hasContentIssue false

Confinement Effects on The Local Motion in Nanocomposites

Published online by Cambridge University Press:  10 February 2011

S. H. Anastasiadis
Affiliation:
Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P. 0. Box 1527, 71110 Heraklion, Crete, Greece
K. Karatasos
Affiliation:
Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P. 0. Box 1527, 71110 Heraklion, Crete, Greece
G. Vlachos
Affiliation:
Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P. 0. Box 1527, 71110 Heraklion, Crete, Greece
E. Manias
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, NY 14853, U.S.A.
E. P. Giannelis
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, NY 14853, U.S.A.
Get access

Abstract

The local segmental dynamics of polymers confined within the 15–20 Å interlayer spacing of nanocomposites consisting of poly(methyl phenyl siloxane) intercalated within organically modified silicates, has been investigated utilizing Dielectric Relaxation Spectroscopy. The effect of confinement on the local reorientational dynamics is evident by the observation of a relaxation mode, which is much faster than the segmental α-relaxation of the bulk polymer and exhibits much weaker temperature dependence. This is attributed to the restrictions placed by the interlayer spacing on the cooperative volume required for the ax-relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giannelis, E. P., Advanced Materials 8, 29 (1996).Google Scholar
2. Krisnamoorti, R. K., Vaia, R. A., and Giannelis, E. P., Chem. Mat. 8, 1728 (1996)Google Scholar
3. Lan, T., Pinnavaia, T., Chem. Mater. 2, 2216 (1994); Chem. Mater. 7, 2144 (1995).Google Scholar
4. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kaamigaito, O., J. Polym. Sci. A 31, 983 (1993). Y. Kojima, J. Mater. Res. 8, 1185 (1993).Google Scholar
5. Burnside, S. D., and Giannelis, E. P., Chem. Mater. 7, 1597 (1995).Google Scholar
6. Lee, J. D., Takekoshi, T., and Giannelis, E. P., Mater. Res. Soc. Symp. Proc. 457, 513 (1997).Google Scholar
7. Giannelis, E. P., Krisnamoorti, R., and Manias, E., Adv. Pol. Sci., in press.Google Scholar
8. Keddie, J. L., Jones, R. A. L., and Covy, R. A., Europhys. Lett. 27, 59 (1994).Google Scholar
9. Reiter, G., Europhys. Lett. 23, 579 (1993).Google Scholar
10. Mansfield, K. F., and Theodorou, D. N., Macromolecules 24, 6283 (1991).Google Scholar
11. Keddie, J. L., Jones, R. A. L., and Covy, R. A., Faraday Disc. 98, 219 (1994).Google Scholar
12. van Zanten, J. H., Wallace, W. E., and Wu, W., Phys. Rev. E 53, R2053 (1996).Google Scholar
13. Zheng, X., Sauer, B. B., van Alsten, J. G., Schwarz, S. A., Rafailovich, M. H., Sokolov, J., and Rubinstein, M., Phys. Rev. Lett. 74, 407 (1995). X. Zheng, M. H. Rafailovich, J. Sokolov, Y. Strzhemechny, S. A. Schwarz, B. B. Sauer, and M. Rubinstein, Phys. Rev. Lett. 79, 241 (1997).Google Scholar
14. Baschnagel, J., and Binder, K., J. Phys. I France 6, 1271 (1996)Google Scholar
15. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R., and Ducher, J. R., Phys. Rev. Lett. 77, 2002 (1996).Google Scholar
16. Jackson, C. L., and McKenna, G. B., J. Chem. Phys. 93, 9002 (1990).Google Scholar
17. Liu, G., Li, Y., and Jonas, J., J. Chem. Phys. 95, 6892 (1991). S. Stapf, R. Kimmich, and R.-O. Seitter, Phys. Rev. Lett. 75, 2855 (1995).Google Scholar
18. Richert, R., Phys. Rev. B 54, 15762 (1996).Google Scholar
19. Schüller, , Mel'nichenko, Yu. B., Richert, R., and Fischer, E. W., Phys. Rev. Lett. 73, 2224 (1994).Google Scholar
20. Arndt, M., Stannarius, R., Groothues, H., Hempel, E., and Kremer, F., Phys. Rev. Lett. 79, 2077 (1997)Google Scholar
21. Huwe, A., Arndt, M., Kremer, F., Haggenmniller, G., and Behrens, P., J. Chem. Phys. 107, 9699 (1997)Google Scholar
22. Petychakis, L., Floudas, G., and Fleischer, G., Europhys. Lett. 40, 685 (1997).Google Scholar
23. Jéôme, B., and Commandeur, J., Nature 386, 589 (1997).Google Scholar
24. Barut, G., Pissis, P., Pelster, R., and Nimitz, G., Phys. Rev. Lett. 80, 3543 (1998).Google Scholar
25. Vaia, R. A., Teukolsky, R. K., and Giannelis, E. P., Chem. Mater. 6, 1017 (1994). R. A. Vaia, and E. P. Giannelis, Macromolecules 30, 7990 (1997); 30, 8000 (1997).Google Scholar
26. Havriliak, S., and Negami, S., Polymer 8, 161 (1967).Google Scholar
27. Karatasos, K., Anastasiadis, S. H., Semenov, A. N., Fytas, G., Pitsikalis, M., and Hadjichristidis, N., Macromolecules 27, 3543 (1994).Google Scholar
28. Donth, E., Glasiibergang (Akademie Verlag, Berlin, 1981).Google Scholar