Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T02:28:51.661Z Has data issue: false hasContentIssue false

Cone-Beam 3-D Reconstruction with Double Circular Trajectory

Published online by Cambridge University Press:  22 February 2011

Ph. Rizo
Affiliation:
Visiting Scientist, Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 L.E.T.I./DSYS CEA/CENG 85X Avenue des Martyrs 38041 Grenoble Cedex, France
P. Grangeat
Affiliation:
L.E.T.I./DSYS CEA/CENG 85X Avenue des Martyrs 38041 Grenoble Cedex, France
P. Sire
Affiliation:
L.E.T.I./DSYS CEA/CENG 85X Avenue des Martyrs 38041 Grenoble Cedex, France
P. Lemasson
Affiliation:
L.E.T.I./DSYS CEA/CENG 85X Avenue des Martyrs 38041 Grenoble Cedex, France
S. Delageniere
Affiliation:
L.E.T.I./DSYS CEA/CENG 85X Avenue des Martyrs 38041 Grenoble Cedex, France
Get access

Abstract

In X-ray cone-beam tomography, the only planar source trajectory that does not produce incomplete data is the infinite line. Such a source trajectory is not experimentally possible. To ensure complete data acquisition with cone-beam radiographs, a set of nonplanar trajectories has been studied. Among the trajectories proposed in the literature, a simple one is a set of two circular trajectories with intersection of the two trajectory axes. The angle between the two axes is related to the maximum aperture of the cone beam. We propose here an exact method for performing this reconstruction using the 3-D Radon transform of the object. The modulation transfer function of this algorithm remains identical to that for the central slice of reconstruction in a single circular trajectory. The relative mean square error for density stays within 2% for an aperture of ±30°. With a single circular trajectory, the relative mean square error may reach 20% at the same aperture. With a double circular trajectory, horizontal artifacts are nearly suppressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rizo, P., Grangeat, P., in Proc. of the Industrial Computerized Tomography Conf. (Am. Soc. for Nondest Test., Seattle, 1989), 2428.Google Scholar
2. Davidge, R. W., Br. Ceram. Trans. J., 88, 113116 (1989).Google Scholar
3. Clarcke, D. R., Faber, K. T., J. Phys. Chem. Solids, vol.48, No. 11, 11151157 (1987).CrossRefGoogle Scholar
4. Rizo, P., Grangeat, P., Sire, P., Lemasson, P., Melennec, P., ”Comparison of two 3D X-ray cone-beam reconstruction algorithms with circular source trajectory” submitted to J. of Opt. Soc.Google Scholar
5. Feldkamp, L. A., Davis, L. C., Kress, J. W., J. Opt. Soc. Am. 1. (6),612619 (1984).CrossRefGoogle Scholar
6. Rizo, P., Ellingson, W. A., in Proc of the Nondestructive Evaluation of Ceramics Conf., (Am. Soc. for Nondest. Test., Columbus, OH, 1990), 121125.Google Scholar
7. Smith, B. D., Ph. D. thesis, University of Rhode Island (1987).Google Scholar
8. Kudo, H., Saito, T., in Proc. Topical Meeting, O.S.A., Signal Recovery and Synthesis III, Cape Cod, MA, 1989, 174177.Google Scholar
9. Grangeat, P., thèse de doctorat Ecole Nationale Supérieure des Télécommunications (1987).Google Scholar
10. Grangeat, P., in Computer Assisted Radiology, CAR'85, Springer-Verlag, Berlin (1985).Google Scholar
11. Grangeat, P., Lecture notes in mathematics, Proc. of Conf. Mathematical Methods in Computed Tomography, Herman, G. T., Louis, A. K., Natterer, F., eds., Springer-Verlag, Berlin (1990)Google Scholar
12. Kirillov, A.A, Soviet Math. Dokl. 2, 268269 (1961).Google Scholar
13. Tuy, H. K., SIAM J. Appl. Math. 43 (3), 546552 (1983).CrossRefGoogle Scholar