Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:19:06.419Z Has data issue: false hasContentIssue false

Conductive Polymer/Transition Metal Oxide Hybrid Materials for Lithium Batteries

Published online by Cambridge University Press:  01 February 2011

Chai-Won Kwon
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87 av. A. Schweitzer, 33608 Pessac Cedex, France
Armel Poquet
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87 av. A. Schweitzer, 33608 Pessac Cedex, France
Stéphane Mornet
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87 av. A. Schweitzer, 33608 Pessac Cedex, France
Guy Campet
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87 av. A. Schweitzer, 33608 Pessac Cedex, France
Josik Portier
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87 av. A. Schweitzer, 33608 Pessac Cedex, France
A. Vadivel Murugan
Affiliation:
Center for Materials for Electronics Technology, Ministry of Information Technology, Govt. of India, Panchwati, Pashan Road, Pune 411 008, India
B. B. Kale
Affiliation:
Center for Materials for Electronics Technology, Ministry of Information Technology, Govt. of India, Panchwati, Pashan Road, Pune 411 008, India
K. Vijayamohanan
Affiliation:
National Chemical Laboratory, CSIR, Pashan Road, Pune 411 008, India
Jin-Ho Choy
Affiliation:
National Nanohybrid Materials Laboratory, School of Chemistry, Seoul National University, Seoul 151-747, South Korea
Get access

Abstract

Organic-inorganic hybrid materials were synthesized for use of lithium battery electrode by two strategies: 1) core-shell strategy for tri-dimensional transition metal oxide and 2) intercalation strategy for bi-dimensional (lamellar) transition metal oxide. We choose conductive polymers as an organic component for high electric conductivity and 3d-transition metal oxides as an inorganic counterpart for large capacity and processibility. Polypyrrole/maghemite and poly(3,4-ethylenedioxythiophene) (PEDOT)/vanadium pentoxide hybrids will be presented and compared with their pristine materials for core-shell and intercalation strategies, respectively. Polypyrrole/maghemite showed an enhanced electrochemical reversibility and capacity up to ∼270 mAh/g in the potential range between 1.3 and 4.3 V vs. Li at 8 mA/g. PEDOT/vanadium pentoxide also exhibited improved reversibility and capacity up to ∼330 mAh/g at 15 mA/g between 2.0 ∼ 4.4 V vs. Li on the second discharge. XRD, IR, electron microscopy, XPS and Xray absorption spectroscopy were used to characterize the samples, and to examine oxidation state of the transition metals, doping character of the polymer and the nature of interaction between the polymer and the transition metal oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, C. de, G. J. Soler-Illia, A. A., Ribot, F. Lalot, T. Mayer, C. R. and Cabuil, V. Chem. Mater. 13, 3061 (2001).Google Scholar
2. Massart, R. IEEE Trans. Magn. 17, 1247 (1981)Google Scholar
3. Kwon, C. W. Poquet, A. Mornet, S. Campet, G.., Portier, J. and Choy, J. H. Electrochem. Commun. 4, 197 (2002)Google Scholar
4. Lei, J. Cai, Z. and Martin, C. R. Synth. Met. 46, 53 (1992); 48, 301 (1992)Google Scholar
5. Pernet, M. Strobel, P. Bonnet, B. Bordet, P. and Chabre, Y. Solid State Ionics 66, 259 (1993)Google Scholar
6. Kanatzidis, M. G. and Wu, C. G. J. Am. Chem. Soc. 111, 4141 (1989)Google Scholar
7. Murugan, A. V. Kale, B. B. Kwon, C. W. Campet, G. and Vijayamohanan, K. J. Mater. Chem. 11, 2470 (2001)Google Scholar
8. Kwon, C. W. Murugan, A. V. Campet, G. Portier, J. Kale, B. B. Vijayamohanan, K. and H, J.. Choy, Electrochem. Commun. 4, 384 (2002)Google Scholar
9. Wong, H. P. Dave, B. C. Leroux, F. Harreld, J. Dunn, B. and Nazar, L. F. J. Mater. Chem. 8, 1019 (1998)Google Scholar
10. Leroux, F. Goward, G. Power, W. P. and Nazar, L. F. J. Electrochem. Soc. 144, 3886 (1997); M. Lira-Cantu and P.Gomez-Romero, ibid. 146, 2029 (1999)Google Scholar