Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:41:15.873Z Has data issue: false hasContentIssue false

Conductive Polymer / High-Tc Superconductor Assemblies

Published online by Cambridge University Press:  15 February 2011

John T. McDevitt
Affiliation:
Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712-1167.
Steven G. Haupt
Affiliation:
Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712-1167.
David R. Riley
Affiliation:
Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712-1167.
Jianai Zhao
Affiliation:
Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712-1167.
Christopher T. Jones
Affiliation:
Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712-1167.
Get access

Abstract

The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa2Cu3O7-δ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa2Cu3O7-δ film, the oxidized (conductive) polymer depresses Tc by up to 15K. Thus, a new type of molecular switch for controlling superconductivity is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chidsey, C.E. and Murray, R.W., Science, 231, 25 (1986).CrossRefGoogle Scholar
2 Wrighton, M.S., Science, 231, 32 (1986).CrossRefGoogle Scholar
3 Burroughs, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature, 347, 539 (1990).CrossRefGoogle Scholar
4 Sailor, M.J., Klavetter, F.L., Grubbs, R.H., and Lewis, N.S., Nature, 346, 155 (1990).Google Scholar
5 Chao, S. and Wrighton, M.S., J. Am. Chem. Soc., 109 (22), 66276631 (1987).CrossRefGoogle Scholar
6 Gamier, F., Horowitz, G., Peng, X.E., and Fickov, N., Adv. Mater., 2, 592 (1990).Google Scholar
7 Dijkkamp, D., Wenkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLean, W.L., and Croft, M., Appl. Phys. Lett., 51 (8), 619621 (1987).CrossRefGoogle Scholar
8 Vase, P., Yueqiang, S., and Freltoft, T., Appl. Surf. Sci., 46, 61 (1990).CrossRefGoogle Scholar
9 McDevitt, J.T., McCarley, R.L., Dalton, E.F., Gollmar, R., Murray, R.W., Collman, J.P., Lee, G.T., and Little, W.A. in Chemistry of High-Temperature Superconductors II. Edited by Nelson, D.L. and George, T.F. (ACS Symposium Series 377, Washington, D.C., 1988) Chapter 17.Google Scholar
10 McCarley, R.L., Morita, M., Wilboum, K.O., and Murray, R.W., J. Am. Chem. Soc., 245, 321 (1988).Google Scholar
11 Feldman, B.J., Burgmayer, P., and Murray, R.W., J. Am. Chem. Soc., 107, 872 (1985).CrossRefGoogle Scholar
12 Diaz, A.F. and Bargo, J., in Handbook of Conducting Polymers, edited by Skotheim, T.A. (Marcel Dekker, New York, 1986) p. 81.Google Scholar
13 Meissner, H., Phys. Rev., 117, 672 (1960).CrossRefGoogle Scholar
14 Hilch, P., Z. Phys., 167, 511 (1962).Google Scholar
15 Clarke, J., Proc. Roy. Soc. A., 308, 447 (1969).Google Scholar
16 Wieck, A.D., Appl. Phys. Lett., 53 (13), 12161218 (1988).Google Scholar
17 Suzuki, Y., Kusaka, T., Aoki, A., Aoyama, T., Yotsuya, T., and Ogawa, S., Jpn. J. of Appl. Phys., 28, 2463 (1989).Google Scholar