Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:01:26.005Z Has data issue: false hasContentIssue false

Conducting polymer thin films as substrates for cell cultures

Published online by Cambridge University Press:  28 February 2014

Marco Marzocchi
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
Erika Scavetta
Affiliation:
Dipartimento di Chimica Industriale, Università di Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
Isabella Zironi
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
Gastone Castellani
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
Annalisa Bonfiglio
Affiliation:
Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
George G. Malliaras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines - CMP, 880 route de Mimet, F-13541 Gardanne, France
Roisin M. Owens
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines - CMP, 880 route de Mimet, F-13541 Gardanne, France
Beatrice Fraboni
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
Get access

Abstract

In biological applications, conjugated polymers offer many advantages compared to inorganic semiconductors, due to their favorable electrical properties and their biocompatibility. Many different parameters affect the cell-substrate interaction and in this work we focus our attention on the role played by the oxidation state and surface morphology of conducting polymer substrates. We realized cell culture substrates using a thin film of a biocompatible conducting polymer widely employed in organic electronics, poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). The oxidation state of the samples was electrochemically modified through the application of a fixed potential, and they were subsequently characterized by atomic force microscopy and optical spectroscopy. Using these techniques we have been able to measure the oxidation state of the polymer films, and to asses that its surface roughness does not depend on its oxidation state. Furthermore, human dermal fibroblast (hDF) were grown on PEDOT:PSS films with different oxidation state, in order to test their efficacy as cell culture substrates and their biocompatibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Owens, R. M., Malliaras, G. G., MRS Bulletin 35, 449 (2010).CrossRefGoogle Scholar
Wallace, G., Spinks, G.. Soft Matter 3, 665 (2007).CrossRefGoogle Scholar
Carlberg, C., Chen, X., Inganas, O., Solid State Ionics 85, 73 (1996).CrossRefGoogle Scholar
Bernards, D. A., Malliaras, G. G., Adv. Funct. Mater. 17, 3538 (2007).CrossRefGoogle Scholar
Kim, J. Y., Jung, J. H., Lee, D. E., Joo, J., Synth. Met. 126, 311 (2002).CrossRefGoogle Scholar
Luo, S. C., Ali, E. M., Tansil, N. C., Yu, H. H., Gao, S., Kantchev, E. A. B., Ying, J. Y., Langmuir 24 (2008).Google Scholar
Wong, J. Y., Langer, R., Ingber, D. E., Proc. Nati. Acad. Sci. USA 91, 3201 (1994).CrossRefGoogle Scholar
Gumus, A., Califano, J. P., Wan, A. M. D., Huynh, J., Reinhart-King, C. A., Malliaras, G. G., Soft Matter 6, 5138 (2010).CrossRefGoogle Scholar
, A. Wan, M. D., Schur, R. M., Ober, C. K., Fischbach, C., Gourdon, D., Malliaras, G. G., Adv. Mat. 18, 2501 (2012).Google Scholar
Guimard, N. K., Gómez, N., Schmidt, C. E., Prog. Polym. Sci. 32, 876 (2007).CrossRefGoogle Scholar
Gleixner, R., Fromherz, P., Biophysical Journal 90, 2600 (2006).CrossRefGoogle Scholar
Collazos-Castro, J. E., Polo, J. L., Hernández-Labrado, G. R., Padial-Cañete, V., García-Rama, C., Biomaterials 31, 9244 (2010).CrossRefGoogle Scholar
Asplund, M., Thaning, E., Lundberg, J., Sandberg-Nordqvist, A. C., Kostyszyn, B., Inganas, O., von Holst, H., Biomed. Mater. 4, 045009 (2009).CrossRefGoogle Scholar
Nilsson, D., Robinson, N., Berggren, M., Forchheimer, R., Adv. Mater. 17, 353 (2005).CrossRefGoogle Scholar
Heuer, H. W., Wehrmann, R., Kirchmeyer, S., Adv. Funct. Mater. 12, 89 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
Khang, D., Lua, J., Yao, C., Haberstroh, K. M., Webster, T. J., Biomaterials 29, 970 (2008).CrossRefGoogle Scholar
Wan, A. M. D., Brooks, D. J., Gumus, A., Fischbach, C., Malliaras, G. G., Chem. Commun. 35, 5278 (2009).CrossRefGoogle Scholar
Saltò, C., Saindon, E., Bolin, M., Kanciurzewska, A., Fahlman, M., Jager, E. W. H., Tengvall, P., Arenas, E., Berggren, M., Langmuir 24, 14133 (2008).Google Scholar
Svennersten, K., Bolin, M. H., Jager, E. W. H., Berggren, M., Richter-Dahlfors, A., Biomaterials 30, 6257 (2009).CrossRefGoogle Scholar
Geiger, B., Bershadsky, A., Pankov, R., Yamada, K. M., Nat. Rev. Mol. Cell. Biol. 2, 793 (2001).CrossRefGoogle Scholar
Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A, Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., Nusgens, B., Neveux, Y., J. Investig. Dermatol. 81, 2s (1983).CrossRefGoogle Scholar