Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T08:44:58.894Z Has data issue: false hasContentIssue false

Conducting Membranes and Coatings made from Redispersable Nanoscaled Crystalline SnO2:Sb Particles

Published online by Cambridge University Press:  10 February 2011

C. Goebbert
Affiliation:
Department of Coating Technology Institut für Neue Materialien-INM
M. A. Aegerter
Affiliation:
Department of Coating Technology Institut für Neue Materialien-INM
D. Burgard
Affiliation:
Department of Coating Technology Institut für Neue Materialien-INM
R. Nass
Affiliation:
Department of Chemistry and Technology of Nonmetallic-Inorganic Materials D-66123 Saarbruecken, Germany Institut für Neue Materialien-INM
H. Schmidt
Affiliation:
Department of Chemistry and Technology of Nonmetallic-Inorganic Materials D-66123 Saarbruecken, Germany Institut für Neue Materialien-INM
Get access

Abstract

Inorganic membranes prepared by the sol gel method are promising candidates for use as filters in separation processes. Conducting supported membranes and coatings have been produced from redispersable nanoscaled crystalline Sb-doped SnO2 powders with a Sb content up to 5 mole % (with respect to Sn). The crystalline particles are monosized (≅4 nm) and fully redispersable in aqueous solution at pH ≥ 8 with a solid content up to 70 wt. %. By thermal treatment at different temperatures and times, the pore size diameter of the material can be adjusted from 4 to 20 nm with a very narrow pore size distribution (∼ ±1 nm) and a total porosity of 63 %, practically independent of the sintering parameters. Uniaxial pressed substrates present similar characteristics with however larger pore size distribution (±5 nm) and 80 % total porosity. Their resistance decreases with sintering temperature and time down to 4 Ω (800 °C 8 h). Fully dispersed aqueous solutions of the powder (25 wt. %) were used to prepare transparent conducting coatings on glass or ceramics by spin-coating. After thermal treatment (1 hour at 550 °C) single layers 200 nm thick exhibited a typical specific electrical resistance ρ = 2.5·10−2 ωcm with transmission in the visible range measured against air of 90%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Bhave, R. R., Inorganic Membranes: Synthesis, Characteristics and Application, Van Nostrand Reinhold, New york 1991.Google Scholar
[2]. Brinker, C. J., Scherer, G. W., Sol-Gel Science: The physics and chemistry of solgel processing, Acad. Press Inc., San Diego, USA 1990.Google Scholar
[3]. Leenaars, A. F. M., Keizer, K., Burggraaf, A. J., J. Mat. Sci. 19 (1984), 1077.Google Scholar
[4]. Larbot, A., Alami-Younssi, S., Persin, M., Sarrazin, J., Cot, L., J. Membr. Sci. 97 (1994), 167.Google Scholar
[5]. Albani, M. I. D. d., Arciprete, C. P., J. Membr. Sci. 69 (1992), 21.Google Scholar
[6]. Brinker, C. J., Raman, N. K., Logan, M. N., Sehgal, R., Assink, R. A., Hua, D. W., Ward, T. L., J. Sol-Gel Sci. Tech. 4 (1995), 117.Google Scholar
[7]. Klein, L. C., Yu, C., Woodman, R., PAvlik, R., Catal. Today 14 (1992), 165.Google Scholar
[8]. Larbot, A., Fabre, J. P., Cot, L., J. Amer. Ceram. Soc. 72 (1989), 257.Google Scholar
[9]. Guizard, C., Julbe, A., Larbot, A., Cot, L., J. Alloys Comp. 8 (1992), 188.Google Scholar
[10]. Brito, G. E. S., Pulcinelli, S. H., Santilli, C. V., J. Sol-Gel Sci. Tech. 2 (1994), 575.Google Scholar
[11]. Santos, L. R. B., Pulcinelli, S. H., Santilli, C. V., J. Sol-Gel Sci. Tech. 8 (1997),.Google Scholar
[12]. Santos, L. R. B., Pulcinelli, S. H., Santilli, C. V., J. Memb. Sci. 127 (1997), 7786.Google Scholar
[13]. Gasparro, G., Pütz, J., Ganz, D., Aegerter, M. A., EuroSun'96 International Symposium on Optical Materials Technology for Energy Efficiency and Solar Energy Conversion (Freiburg), Parameters Affecting the Electrical Conductivity of SnO2: Sb Sol-Gel Coatings (1996).Google Scholar
[14]. Burgard, D., Goebbert, C., Nass, R., J. Sol-Gel Sci. Tech. (in press),.Google Scholar
[15]. Burgard, D., Nass, R., Schmidt, H., Aqueous Chemistry and Geochemistry of Oxides, Oxyhydroxides and related Materials, MRS 432, pp. 113–20 (1997).Google Scholar
[16]. Burgard, D., Nass, R., Schmidt, H., Werkstoffwoche. Symp. 6 Werkstoff und Verfahrenstechnik, pp. 569–77 (1997).Google Scholar
[17]. Burgard, D., Kropf, C., Nass, R., Schmidt, H. in Better Ceramics through Chemistry, MRS 346 pp. 101–7 (1994).Google Scholar
[18]. Persello, J., Magnin, A., Chang, J., Piau, J. M., Cabane, B., J. Rheol. 38 (1994), 1845.Google Scholar
[19]. IUPAC, Pure Appl. Chem. 57 (1985), 603.Google Scholar
[20]. Santilli, C. V., Pulcinelli, S. H., Craierich, D. F., Phys. Rev. B 51 (1995), 8801–9.Google Scholar
[21]. Ptitz, J., Ganz, D., Gasparro, G., Aegerter, M. A., Proc. Int. Conference Sol-Gel 97, 31.08-05.09.1997, Sheffield, UK (1997).Google Scholar