Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T03:34:01.101Z Has data issue: false hasContentIssue false

Condenser-Transducer Configuration for Improving Radiation Efficiency of Near-Field Optical Transducers

Published online by Cambridge University Press:  01 February 2011

Kursat Sendur
Affiliation:
Seagate Technology Research Center 1251 Waterfront Place Pittsburgh, PA 15222, U.S.A.
Chubing Peng
Affiliation:
Seagate Technology Research Center 1251 Waterfront Place Pittsburgh, PA 15222, U.S.A.
William Challener
Affiliation:
Seagate Technology Research Center 1251 Waterfront Place Pittsburgh, PA 15222, U.S.A.
Get access

Abstract

Near-field radiation efficiency of the ridge waveguide transducer is investigated in the vicinity of a recording magnetic medium. Near-field radiation from a ridge waveguide transducer is expressed in terms of power density quantities. This allows us to quantify the near-field radiation efficiency from the near-field transducer with respect to the input optical power. Finite element method (FEM), which is capable of modeling focused beams, is used to simulate various geometries involving ridge waveguides. The incident electric field near the focal region is determined using a Gaussian beam expression and Richards-Wolf vector field equations for low NA and high NA beams, respectively. First, the ridge waveguide transducer is placed at the focal point of an optical lens system. The maximum value of the absorbed optical power in the recording medium is 1.6*10-4 mW/nm3 for a 100 mW input optical power. Finally, the ridge waveguide is placed adjacent to a solid immersion lens but separated by a low-index dielectric layer. For this case, the maximum value of the absorbed optical power in the recording medium is 7.5*10-4 mW/nm3 for a 100 mW input optical power. The improvement in the transmission efficiency is a result of two factors: 1. Increased incident electric field over the transducer surface due to increased NA of the optical system, 2. Surface plasmon enhancement obtained by placing a low-index dielectric material between the solid immersion lens and ridge waveguide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hartschuh, A. et al., Phys. Rev. Lett. 38, 1719 (2002).Google Scholar
2. Mansfield, S. M. and Kino, G. S., Appl. Phys. Lett. 57, 2615 (1990).Google Scholar
3. Grober, R. D., Schoelkopf, R. J., and Prober, D. E., Appl. Phys. Lett. 70, 1354 (1997).Google Scholar
4. Mihalcea, C. et al., Appl. Phys. Lett. 68, 3531 (1996).Google Scholar
5. Ohtsu, M. and Hori, H., Near-Field Nano-Optics (Kluwer Academic, New York, NY, 1999).Google Scholar
6. Challener, W. A. et al., Jpn. J. Appl. Phys. 42, 2043 (2002).Google Scholar
7. Lu, P. L. and Charap, S. H., J. Appl. Phys. 75, 5768 (2001).Google Scholar
8. Bertram, H. N. and Williams, M., IEEE Trans. Magn. 36, 4 (2000).Google Scholar
9. Mallary, M., Torabi, A., and Benakli, M., IEEE Trans. Magn. 38, 1719 (2002).Google Scholar
10. Weller, D. and Mosser, A., IEEE Trans. Magn. 35, 4423 (1999).Google Scholar
11. Iwasaki, S. I. and Hokkyo, J., Eds., Perpendicular Magnetic Recording (IOS Press, Amsterdam, Netherlands, 1991).Google Scholar
12. McDaniel, T. and Challener, W., Trans. Mag. Soc. Jpn. 2, 316 (2002).Google Scholar
13. Sun, W. and Balanis, C. A., IEEE Trans. Microwave Theory Tech. 41, 1965 (1993).Google Scholar
14. Balanis, C. A., Advanced Engineering Electromagnetics (John Wiley & Sons, New York, NY, 1989)Google Scholar
15. Utsumi, Y., IEEE Trans. Microwave Theory Tech. 33, 111 (1985).Google Scholar
16. Getsinger, W. J., IEEE Trans. Microwave Theory Tech. 9, 41 (1962).Google Scholar
17. Shi, X., Thornton, R. and Hesselink, L., Proceedings of Optical Data Storage 70, 1354 (2001).Google Scholar
18. Shi, X. and Hesselink, L., Jpn. J. Appl. Phys. 41, 1632 (2001).Google Scholar
19. Schlesinger, T. E. et al., Jpn. J. Appl. Phys. 41, 1821 (2002).Google Scholar
20. Jin, E. X. and Xu, X., Jpn. J. Appl. Phys. 43, 407 (2004).Google Scholar
21. Itagi, A. V. et al., Appl. Phys. Lett. 83, 4474 (2003).Google Scholar
22. Sendur, K., Challener, W., and Peng, C., J. Appl. Phys. 96, 2743 (2004).Google Scholar
23. Richards, B. and Wolf, E., Proc. Roy. Soc. London Ser. A 253, 349 (1959).Google Scholar
24. Wolf, E., Proc. Roy. Soc. London Ser. A 253, 358 (1959).Google Scholar
25. Otto, A., Z. Phys. 216, 398 (1968).Google Scholar
26. Palik, E. D., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998)Google Scholar