Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T00:10:00.262Z Has data issue: false hasContentIssue false

Concrete Biodeterioration in the U.S.-Mexico Border Region

Published online by Cambridge University Press:  01 February 2011

L. E. Rendon*
Affiliation:
Mexican Institute of Water Technology (IMTA), 8532 Cuauhnahuac, Jiutepec, Morelos
M. E. Lara
Affiliation:
Marudecori Consultants, Cuernavaca, Morelos, México;
S. K. Rendon
Affiliation:
School of Chemistry, National University Autonomous of Mexico, México City
M. Rendon
Affiliation:
Marudecori Consultants, Cuernavaca, Morelos, México;
X. Li
Affiliation:
Mexican Institute of Water Technology (IMTA), 8532 Cuauhnahuac, Jiutepec, Morelos
*
*Corresponding author: [email protected] Tel 52(777)3293600 ext. 166
Get access

Abstract

Concrete biodeterioration is defined as the damage that the products of microorganism metabolism, in particular sulfuric acid, do to hardened concrete. In Canada and in the northern part of the United States, sewer failures from concrete biodeterioration are almost unknown. In the southern part of the United States and in Mexico, however, it is a serious and expensive problem in sewage collection systems, which rapidly deteriorate. Also, leaking sewage systems result in the loss of groundwater resources particularly important in this arid region. Almost every city in the Mexican-American border region, who's combined population is more than 15 million people, faces this problem. The U.S. cities have made some provision to face these infrastructure problems, but the Mexican cities have made less effort. We recommend here the Mexican norm (NMX-C-414-ONNCCE-2004) [1] to be reviewed, or at least that a warning be issued as a key measure to avoid concrete biodeterioration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. U.S. Department of State. (1944). Utilization of waters of the Colorado and Tijuana Rivers and of the Rio Grande. Treaty Series 994, Treaty between the United States of America and Mexico. Washington, D.C.: Government Printing Office.Google Scholar
2. Parker, C.D. (1945a) The corrosion of concrete 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Aust. J. Exp. Biol. Med. Sci. 23, 81.Google Scholar
3. Parker, C.D. (1945b). The corrosion of the concrete II. The function of Thiobacillus concretivorus nov. spec. in the corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Aust. J. Exp. Biol. Med. Sci. 23, 9198.Google Scholar
4. Parker, C.D. (1947). Species of sulfur bacteria associated with the corrosion of concrete. Nature. 159 (4039) 439440.Google Scholar
5. Rigdon, J.H., and Beardsley, C.W. (1956). Corrosion of concrete by autotrophs. Corrosion. 14: 6062.Google Scholar
6. Milde, K. W., Sand, W., and Bock, E. (1983) Thiobacilli of the Corroded Concrete Walls of the Hamburg Sewer System, J. Gen. Microbiol. 129, 13271333.Google Scholar
7. Sand, W. (1987). Importance of hydrogen sulfide, thiosufate, and methylmercaptan for growth of Thiobacilli during simulation of concrete corrosion.” Appl. Microbiol. 53(7): 16451648.Google Scholar
8. Diercks, M., Sand, W., and Bock, E. (1991). Microbial corrosion of concrete. Experentia. 47: 514516.Google Scholar
9. Islander, R.L., Devinny, F., Mansfeld, A., Postyn, A., and Shih, H. (1991). Microbial Ecology of crown corrosion in sewers. Journal of Environmental Engineering. 117: 751770.Google Scholar
10. Mori, T., Nonaka, T., Tazaki, K., Koga, M., Hikosaka, Y., and Noda, S. (1992). Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipe. Water Resources. 26: 2937.Google Scholar
11. Cho, K-S., and Mori, T. (1995). A newly isolated fungus participates in the corrosion of concrete sewer pipe. Water Science and Technology. 31(7): 263271.Google Scholar
12. Sydney, R., Esfandi, E, and Surapaneni, S. (1996). Control concrete sewer corrosion via the crown spray process. Water Environmental Research. 68: 338347.Google Scholar
13. Davis, J., Nica, D., Shields, K., and Roberts, D.J. (1998). Analysis of concrete from corroded sewer pipe. International Biodeterioration and Biodegradation. 42: 7584.Google Scholar
14. Nica, D., Dickey, J., Davis, J., Zuo, G., and Roberts, D.J. (2000). Isolation and characterization of sulfur oxidizing organisms from corroded concrete in Houston sewers. International Biodeterioration and Biodegradation. 46: 6168.Google Scholar
15. Hernandez, M.T., Marchand, D.J., Roberts, D.J. and Peccia, J.L (2002). In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. International Biodeterioration and Biodegradation. 49: 271276.Google Scholar
16. Roberts, D.J., Nica, D., Zuo, G., and Davis, J. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration and Biodegradation. 49(4): 227234.Google Scholar
17. Smith, D.W. (1992) Ecological Actions of Sulfate-Reducing Bacteria. In Sulfate-Reducing Bacteria: Contemporary Perspectives. Odom, J. M. and Singleton, R. (Eds.), Springer-Verlag, Germany, 161188.Google Scholar
18. Sand, W. and Bock, E. (1984). Concrete corrosion in the Hamburg sewer system, Environmental Technology Letters, 5, 517528.Google Scholar
19. Kelly, D.P., and Wood, A.P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology. 50: 511516.Google Scholar
20. Peccia, J., Marchand, E.A., Silverstein, J., and Hernandez, M.T. (2000). “Development and Application of small-subunit rRNA Probes for the Assessment of selected Thiobacillus Species and Members of the Genus Acidophilium.” Applied Environmental Microbiology. 66(7): 30653072.Google Scholar
21. Parker, C.D. (1951). Mechanisms of corrosion of concrete sewers by hydrogen sulfide. Sewage lndustrial Wastes, 23 (12), 14771485.Google Scholar
22. Rendon, L.E. (1999) Proyecto HC-9915 Diagnóstico de la corrosión en los tubos de concreto en los sistemas de drenaje de las ciudades de Reynosa y Torreón. Internal report Mexican Institute of Water Technology 1999.Google Scholar
23. Lara, M.E. Corrosión microbiologicamente inducida en la tubería de concreto del drenaje urbano. PhD Tesis, Universidad Autónoma del Estado de Morelos, México. (in press 2004).Google Scholar
24. Magaña, M. E. Lara, Liuy, X. Li Mirón, L. E. Rendón Díaz. La importancia de la composición del cemento portland en la mitigación del biodeterioro en la infraestructura hidráulica de concreto. Revista Ingeniería Hidráulica en México, vol. XXIV, núm. 2, pp. 139146, abril-junio de 2009.Google Scholar
25. Rohwerder, T. and Sand, W. The sulfane sulphur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 149, 16991709 (2003).Google Scholar
26. Karavaiko, G.I., and Pivovarova, T.A. (1973). “Oxidation of elementary sulfur by Thiobacillus thiooxidans.” Microbiologiya, Leningrad, U.S.S.R., 42 (3), 389395.Google Scholar
27. ONNCCE. Norma Mexicana (NMX-C-414-ONNCCE-2004). Declaratoria de vigencia publicada en el Diario Oficial de la Federación el día 27 de julio de 2004. México, D.F.: Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.Google Scholar