Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:31:11.816Z Has data issue: false hasContentIssue false

Concept and Overview of Rigid Rod Molecular Composites

Published online by Cambridge University Press:  26 February 2011

Wen-Fang Hwang
Affiliation:
Central Research - Advanced Polymeric Systems, The Dow Chemical Company, Midland, MI 48674
T. E. Helminiak
Affiliation:
AFWAL/MLBP, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433–6533
Get access

Abstract

Recently, the concept of rigid rod molecular composites, originally demonstrated in the Air Force Materials Laboratory, has attracted wide spread attention in the global research community in the hope of creating a new generation of materials for structural and electronic applications in extreme environments. As originally conceived, a molecular composite is a homogeneous, synergistic composite of molecularly dispersed rigid rod polymer molecules (single molecules or small bundles of molecules with a lateral dimension of less than 50 Å) with high aspect ratios in a matrix material. The enhanced and desirable properties, such as superior chemical and environmental resistance, enhanced thermal and thermoxidative stability, toughness, and dimensional stability, resulting from the synergism between the reinforcing rigid rods and the matrix can only be realized in a true molecular composite. Without the development of true rigid rod molecular composite technology, the fundamental detrimental interfacial problems (adhesion, different thermal expansion coefficients, etc.) encountered in conventional fiber composites can not be averted. A truly revolutionary material technology can be developed only if one adheres to the original concept.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helminiak, T. E., ACS Div. of Organic Coatings and Plastic Chem. Preprints, vol. 40, 475 (1979).Google Scholar
2. Hwang, W. F., Wiff, D. R., Benner, C. L., Helminiak, T. E., J. Macromol. Science (Physics), B22, 231257, (1983).Google Scholar
3. Hwang, W. F., Wiff, D. R., Price, G. E., Helminiak, T. E., Adams, W. W., Polym. Engin. Sci., vol. 23, 748, (1983).Google Scholar
4. Hwang, W. F., Wiff, D. R., Helminiak, T. E., Adams, W. W., Org. Coat. & Plas.Eng., vol. 48, 929, (1982).Google Scholar
5. Hwang, W. F., Wiff, D. R., Verschoore, C., Polym. Eng. Sci., Vol. 23, 789, (1983).CrossRefGoogle Scholar
6. Hwang, W. F., Wiff, D. R., Helminiak, T. E., U. S. Patent # 4,631,318, (1986).Google Scholar
7. Chuah, H., Kyu, T., Helminiak, T. E., Polym. Mat. Sci. & Eng., vol. 56, 58, (1987).Google Scholar
8. Uy, W. C., European Patent Pub. # 0-264-271-A2, (1988).Google Scholar
9. Hwang, C. R., Malone, M. F., Farris, R. J., Polym. Mat. Sci & Eng., vol. 59, 440, (1988).Google Scholar
10. Halpin, J. C., Tsai, S. W, AFML-TR-67-423, (1967).Google Scholar
11. Graessley, W. W., Edwards, S. F., Polymer, Vol. 22, 1329, (1980).Google Scholar
12. Flory, P. J., Macromol., Vol. 11, 1138, (1978).Google Scholar
13. Nishihara, T., Mera, H., Matsuda, K., Polym. Mat. Sci. & Eng., vol. 55, 821, (1986).Google Scholar
14. Choe, S., MacKnight, W. J. and Karasz, F., Polym. Sci. & Eng., vol. 59, 702, (1988).Google Scholar
15. Chen, P. N. Sr., Chung, T. S., Harget, P. J. and Jaffe, M. J., Polym. Sci. & Eng., vol. 59, 707 (1988).Google Scholar
16. Rafalko, J. J., Chen, R. T., Menczel, J. D., Demeuse, M. T. and Sawyer, L. C., Polym. Sci. & Eng., vol. 59, 711 (1988).Google Scholar