Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:30:49.905Z Has data issue: false hasContentIssue false

Concentration Quenching of Tb3+ Doped SiC:H and AlN Thin Films in Photoluminescence and Cathodoluminescence Measurements

Published online by Cambridge University Press:  20 June 2013

J. A. Guerra
Affiliation:
Pontifical Catholic University of Peru, Sciences Department, Physics Section, Av. Universitaria 1801, Lima 32, Peru. University of Erlangen-Nurnberg, Institute of Material Science 6, Martensstr. 7, 91058 Erlangen, Germany
F. Benz
Affiliation:
University of Stuttgart, Institute of Materials Science, Chair of Material Physics, Heisenbergstr. 3, 70569 Stuttgart, Germany
L. Montañez
Affiliation:
Pontifical Catholic University of Peru, Sciences Department, Physics Section, Av. Universitaria 1801, Lima 32, Peru.
R. Grieseler
Affiliation:
Technical University of Ilmenau, Institute of Materials Technology, POB 100565, 98684 Ilmenau, Germany.
P. Schaaf
Affiliation:
Technical University of Ilmenau, Institute of Materials Technology, POB 100565, 98684 Ilmenau, Germany.
F. De Zela
Affiliation:
Pontifical Catholic University of Peru, Sciences Department, Physics Section, Av. Universitaria 1801, Lima 32, Peru.
A. Winnacker
Affiliation:
University of Erlangen-Nurnberg, Institute of Material Science 6, Martensstr. 7, 91058 Erlangen, Germany
H. P. Strunk
Affiliation:
University of Stuttgart, Institute of Materials Science, Chair of Material Physics, Heisenbergstr. 3, 70569 Stuttgart, Germany
R. Weingärtner
Affiliation:
Pontifical Catholic University of Peru, Sciences Department, Physics Section, Av. Universitaria 1801, Lima 32, Peru. University of Erlangen-Nurnberg, Institute of Material Science 6, Martensstr. 7, 91058 Erlangen, Germany
Get access

Abstract

We present a systematic study of photo- and cathodoluminescence measurements in the visible of Terbium doped SiC:H and AlN thin films. The Terbium atomic concentrations vary from 0.9 to 10% for the SiC:H and from 0.8 to 6% for the AlN samples. For both materials the increase of the emission intensity with concentration and the subsequent quenching effect can be seen. The optimal concentration for the highest light emission is found. Photoluminescence excitation spectroscopy addresses the enhancement light emission mechanisms of the principal emission electronic transition of Terbium at ∼542 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steckl, A. J. and Zavada, J. M., MRS Bull. 24, 16 (1999).CrossRefGoogle Scholar
Park, J. H. and Steckl, A. J., Appl. Phys. Lett. 85, 4588 (2004).CrossRefGoogle Scholar
Nishikawa, A., Kawasaki, T., Furukawa, N., Terai, Y., and Fujiwara, Y., Appl. Phys. Express 2, 071004 (2009).CrossRefGoogle Scholar
Toyama, T., Ota, J., Adachi, D., Niioka, Y., Lee, D., and Okamoto, H., J. Appl. Phys. 105, 084512 (2009).Google Scholar
Nishikawa, A., Furukawa, N., Kawasaki, T., Terai, Y., and Fujiwara, Y., Optical Materials 33, 1071 (2011).CrossRefGoogle Scholar
Chen, S., Dierre, B., Lee, W., Sekiguchi, T., Tomita, S., Kudo, H., and Akimoto, K., Appl. Phys. Lett. 96, 181901 (2010).CrossRefGoogle Scholar
Hömmerich, U., Ei Nyein, D.S., Lee, A.J., Steckl, J.M., and Zavada, J. M., Appl. Phys. Lett. 83, 4556 (2003).CrossRefGoogle Scholar
Lozykowski, H. J. and Jadwisienczak, W. M., Appl. Phys. Lett. 76, 861 (2000).CrossRefGoogle Scholar
Benz, F. and Strunk, H. P., AIP Advances 2, 042115 (2012).CrossRefGoogle Scholar
Wang, K., O’Donnell, K. P., Hourahine, B., Martin, R. W., Watson, I. M., Lorenz, K., and Alves, E., Phys. Rev. B 80, 125206 (2009).CrossRefGoogle Scholar
Weingärter, R., Guerra, J. A., Erlenbach, O., Gálvez, G., De Zela, F., and Winnacker, A., Mater. Sci. and Eng. B 174, 114 (2010).CrossRefGoogle Scholar
Guerra, J. A., Benz, F., Zanatta, A. R., Strunk, H. P., Winnacker, A., and Weingärtner, R., Phys. Stat. Sol. C 10, 68 (2013).Google Scholar
Benz, F., Guerra, J. A., Weng, Y., Weingärtner, R., and Strunk, H. P., Phys. Stat. Sol. C 10, 109 (2013).Google Scholar
Benz, F., Guerra, J. A., Weng, Y., Zanatta, A. R., Weingärtner, R., and Strunk, H. P., J. Lumin. 137, 73 (2013).CrossRefGoogle Scholar
Bickermann, M., Epelbaum, B. M., Filip, O., Heimann, P., Nagata, S., and Winnacker, A., Phys. Stat. Sol. C 7, 21 (2010).Google Scholar
Dimitrova, V.I., Perjeru, F., Chen, H., and Kordesh, M. E., Mat. Res. Soc. Symp. Proc. 621, Q5.4.1 (2000).CrossRefGoogle Scholar
Dimitrova, V. I., Van Patten, P. G., Richardson, H., and Kordesch, M. E., Appl. Surf. Sci. 175176, 480 (2001).CrossRefGoogle Scholar
Adachi, D., Kitaike, R., Ota, J., Toyama, T., and Okamoto, H., J. Mater. Sci. Mater Electron. 18, S71 (2007).CrossRefGoogle Scholar
Richardson, H. H., Van Patten, P. G., Richardson, D. R., and Kordesch, M. E., Appl. Phys. Lett. 80, 2207 (2002).CrossRefGoogle Scholar
Lu, F., Carius, R., Alam, A., Heuken, M., and Buchal, Ch., J. Appl. Phys. 92, 2457 (2002).CrossRefGoogle Scholar