Published online by Cambridge University Press: 28 February 2011
Infrared absorption spectroscopy has been used to measure atomic chlorine concentrations over a range of plasma conditions in both Cl2 and CF3Cl discharges.These measurements were made utilizing the spin-orbit transitions in the ground state of atomic chlorine near 882 cm−1.The concentration studies were performed by passing light from a diode laser through a multi-pass (White) cell set in two opposed windows of a parallel plate plasma etching reactor.The plasma work was preceded by a laboratory measurement of the infrared absorption line strengths of the 2P1/2 ← 2P3/2 transition.This measurement was done in a known concentration of atomic chlorine produced in a low pressure discharge flow system by the reaction of Cl2 or HCl with excess fluorine atoms.These measurements resulted in an integrated line strength of 4.14 (±0.89) × 10−21 cm2-molecule−1-cm−1 for the strongest hyperfine component of the transition at 882.3626 cm−1.
Measured atomic chlorine concentrations in Cl2 discharges varied between 0.2 and 8.0 × 1014 atoms/cm3, representing atomic chlorine fractions on the order of a few percent.The measured atomic chlorine concentrations increased approximately linearly with increasing power and pressure, and increased with increasing frequency above approximately 1 MHz.Below 1 MHz, the atomic chlorine concentration was relatively independent of frequency.