Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:03:42.977Z Has data issue: false hasContentIssue false

Computer-Controlled Fabrication of Concentric Multilayer Fresnel Zone Plate for Synchrotron Radiation Hard X-Ray

Published online by Cambridge University Press:  17 March 2011

Masato Yasumoto
Affiliation:
Photonics Research Institute, AIST, AIST Tsukuba Central2, Tsukuba 305-8568, Japan Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Shigeharu Tamura
Affiliation:
Photonics Research Institute, AIST, AIST Kansai, Ikeda Osaka 563-8577, Japan Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Nagao Kamijo
Affiliation:
Kansai Medical University, Uyama-higashi, Hirakata, Osaka, 573-1136, Japan Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Yoshio Suzuki
Affiliation:
Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Mitsuhiro Awaji
Affiliation:
Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Akihisa Takeuchi
Affiliation:
Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Hidekazu Takano
Affiliation:
Japan Synchrotron Radiation Research Institute(SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Yoshiki Kohmura
Affiliation:
Riken Harima Institute (SPring-8), Mikazuki-cho, Hyogo, 679-5198, Japan
Katsumi Handa
Affiliation:
Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
Get access

Abstract

A Fresnel zone plate (FZP) is a micro-focusing optical element of synchrotron radiation hard X-ray. Our developed multilayer FZP produced a sub-micron size spot at the hard X-ray energy and the focusing efficiency is about 25%. However the higher efficiency FZP is required to utilize the sub-micron probe in microscopy, diffraction and imaging applications. A kinoform FZP composed of gradient refractive index phase zones has the advantage of a high focusing efficiency compared to the conventional multilayer FZP. In order to fabricate the kinoform FZP, we developed a computer-control system. The developed computer-control system automatically operates whole combinatorial deposition processes of the kinoform FZP by inputting the optical parameters of the FZP (focal length, X-ray wavelength, number of zones, zone materials).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Panitz, M., Schneider, G., Peuker, M., Hambach, D., Kaulich, B., Oestreich, S., Susini, J., Schmahl, G., in 6th International Conference on X-ray microscopy, Meyer-Ilse, W., Warwick, T., Attwood, D. (eds.), AIP Proceedings (Berkeley, Aug. 1999), vol. 507, pp676.Google Scholar
2. Jacobsen, C., Williams, S., Anderson, E., Browne, M.T., Buckley, C.J., Kern, D., Kirz, J., Rivers, M., Zhang, X., Opt. Comm. 86, 351 (1991).Google Scholar
3. Denbeaux, G., Anderson, E., Chao, W., Eimüller, T., Johnson, L., Köhler, M., Larabell, C., Legros, M., Fischer, P., Pearson, A., Schütz, G., Yager, D., Attwood, D., Nucl. Instu. Meth. A467–468, 841 (2001).Google Scholar
4. Bionta, R.M., Skulina, K.M., Jankowski, A.F., Appl. Phys. Lett. 64, 945 (1994).Google Scholar
5. Düvel, A., Rudolph, D., Schmahl, G., in 6th International Conference on X-ray microscopy, Meyer-Ilse, W., Warwick, T., Attwood, D. (eds.), AIP Proceedings (Berkeley, Aug. 1999), vol. 507, pp607.Google Scholar
6. Tamura, S., Murai, K., Kamijo, N., Yoshida, K., Kihara, H., and Suzuki, Y., Vacuum 59, 553 (2000).Google Scholar
7. Kamijo, N., Suzuki, Y., Tamura, S., Awaji, M., Yasumoto, M., Kohmura, Y., Handa, K., Takeuchi, A., in 6th International Conference on X-ray microscopy, Meyer-Ilse, W., Warwick, T., Attwood, D. (eds.), AIP Proceedings (Berkeley, Aug. 1999), vol. 507, pp672.Google Scholar
8 Suzuki, Y., Awaji, M., Kohmura, Y., Takeuchi, A., Takano, H., Kamijo, N., Tamura, S., Yasumoto, M., Handa, K., Nucl. Instu. Meth. A467–468, 951 (2001).Google Scholar
9. Awaji, M., Suzuki, Y., Takeuchi, A., Takano, H., Kamijo, N., Tamura, S., Yasumoto, M., Nucl. Instu. Meth. A467–468, 845 (2001).Google Scholar
10. Fabrizio, E.D., Gentili, M., Grella, L., Baciocchi, M., Kranoperova, A., Cerrina, F., Yun, W., Lai, B., Gluskin, E., J. Vac. Sci. Tec. 12, 3982 (1994).Google Scholar
11. Yun, W., Lai, B., Krasnoperova, A. A., Fabrizio, E.D., Cai, Z., Cerrina, F., Chen, Z., Gentilli, M., Gluskin, E., Rev. Sci. Instrm. 70, 3537 (1999).Google Scholar
12. Fabrizio, E.D., Romanato, F., Gentill, M., Cabrini, S., Kaulich, B., Susini, J., Barrett, R., Nature 401, 895 (1999).Google Scholar
13. Fujisaki, H., Nakagiri, N., Appl. Opt. 29, 483 (1990).Google Scholar
14 Tamura, S., Mori, K., Maruhashi, T., Yoshida, K., Ohtani, K., Kamijo, N., Suzuki, Y., Kihara, H., Extended abstracts (The 57th Fall Meeting, 1996); The Japan Society of Applied Physics and Related Societies, pp493.Google Scholar