Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:22:26.711Z Has data issue: false hasContentIssue false

Computer Simulations of Diffusion in Monolayers Physisorbed in Model Pores

Published online by Cambridge University Press:  15 February 2011

Mary J. Bojan
Affiliation:
Department of Chemistry, 152 Davey Laboratory, Penn State University, University Park, PA 16802, USA
William Steele
Affiliation:
Department of Chemistry, 152 Davey Laboratory, Penn State University, University Park, PA 16802, USA
Get access

Abstract

Two types of model pore have been considered as sorbents of methane at 300 K: the first is a straight cylinder with atomically rough walls characteristic of an amorphous solid. Three cylinder radii plus the reference flat surface were taken for study. The second is a parallel-walled slit pore made up of graphite basal planes that had been modified by the insertion of sulfide atoms. Here, two values of sulfur loading were taken together with the reference pure graphite pore. Two values of the wall spacing were assumed for each sulfur loading. Thermodynamic and structural properties are presented elsewhere; here, the dependence of diffusion constants as a function of the monolayer density is presented for methane in the various model pores. It is shown that these diffusivities depend primarily on the methane-methane collisions in the monolayer films. There is a slight dependence upon the nature of the solid surface which is interpreted in terms of the hindrances produced by soft obstacles to molecular motion parallel to the surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. MacElroy, J. M. D. and Su, S. H., Molec. Simul., 2, 313 (1989); G. S. Heffelfinger, Z. Tan, K. E. Gubbins, U. B. Marconi, and F. van Swol, Ibid., 2, 393 (1989); V. Ya Antonchenko, V. V. Ilyin, N. N. Makovsky, and V. Khryapa, Mol. Phys., 65, 1171 (1988); U. Heinbuch and J. Fischer, Chem. Phys. Lett., 135, 587 (1987); S. Sokolowski, Mol. Phys., 75, 1301 (1992); B. K. Peterson, and K. E. Gubbins, Ibid., 62, 215 (1987); J. Chem. Phys., 88, 6487 (1988); T. Demi and D. Nicholson, Molec. Simul. 5, 363 (1991).Google Scholar
2. Tan, Z. and Gubbins, K. E., J. Phys. Chem., 94, 6061 (1990); C. Rhykerd, Z. Tan, L. A. Pozhar, and K. E. Gubbins, Proc. Faraday Symp. 26, Molecular Transport in Confined Regions and Membranes, Oxford, December 1990. J. P. R. B. Walton and N. Quirke, Molec. Simul., 2, 361 (1989); M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys., 87, 5464 (1987); S. Sokolowski and J. Fischer, Mol. Phys., 71, 393 (1990); S. Sokolowski, Ibid., 75, 999 (1992); M. Schoen, C. L. Rhykerd, J. H. Cushman and D. J. Diestler, Ibid., 66, 1171 (1989); A. Z. Panagiotopoulos, Ibid., 62, 701 (1987); J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys., 83, 1888 (1985); Z.-B. Zhu and G. W. Robinson, Ibid., 94, 1403 (1991); G. Subramanian and H. T. Davis, Mol. Phys., 38, 1061 (1979); S. Das Arama, K. E. Kohr, S. M. Paik, and T. R. Kirkpatrick, Chem. Phys. Lett., 120, 97 (1985); K. G. Honnell and C. K. Hall, J. Chem. Phys., 91, 4827 (1989); M. Moraldi and G. Rickayzen, Mol. Phys., 66, 143 (1989); E. Kozak and S. Sokolowski, J. Chem. Soc. Faraday Trans., 87, 3415 (1991); W. van Megen and I. K. Snook, Mol. Phys., 54, 741 (1985).Google Scholar
3. Bojan, M. J., Slooten, R. A. van, and Steele, W. A., Langmuir, submittedGoogle Scholar
4. Bojan, M. J., Vernov, A. V., and Steele, W. A., Langmuir, 8, 901 (1992).Google Scholar
5. Hoover, W. G., Phys. Rev. A: Gen. Phys., 31, 1695 (1985); O. J. Evans and G. P. Morriss, Chem. Phys., 77, 63 (1983).Google Scholar
6. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Oxford University Press, Oxford, 1987).Google Scholar
7. Bojan, M. J., Van Slooten, R., and Steele, W. A., Separ. Sci. and Tech. 27, 1837 (1992).Google Scholar
8. Sinanoglu, O. and Pitzer, K. S., J. Chem. Phys. 32, 1279 (1960); A. D. MacLachlan, Mol. Phys., 7, 381 (1964); L. W. Bruch, J. Chem. Phys., 79, 3148 (1983).Google Scholar
9. Bakaev, V. A., Surf. Sci., 198, 571 (1988); J. L. Finney, in Amorphous Metallic Alloys, edited by F. E. Luborsky (Butterworths, London, 1983) pp. 42–47.Google Scholar
10. Riccardo, J. L., Chade, M. A., Pereyra, V. D., and Zgrablich, G., Langmuir 8, 1518 (1992).Google Scholar
11. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, (John Wiley & Sons, New York, 1954).Google Scholar
12. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. Jr., Weiner, P., J. Am. Chem. Soc., 106,765 (1984).Google Scholar
13. Steele, W. A., J. Phys. Chem., 82, 817 (1978); J. R. Sams, J. Chem. Phys., 43, 2243 (1965).Google Scholar
14. Forester, T. R., McDonald, I. R., and Klein, M. L., Chem. Phys., 129, 225 (1989).Google Scholar