Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:37:33.954Z Has data issue: false hasContentIssue false

Computer Simulation Studies of the Temperature Dependence of Domain Growth Kinetics

Published online by Cambridge University Press:  21 February 2011

Kristen A. Fichthorn
Affiliation:
Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
W. Henry Weinberg
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
Get access

Abstract

Understanding the kinetics of domain growth in quenched systems is a significant fundamental problem with particular relevance to materials science. The temperature dependence of domain growth has interesting manifestations which lie outside current theoretical developments. In a series of Monte Carlo studies, we have investigated and obtained a detailed resolution of the temperature dependencies of domain growth in a model of a two-dimensional, quenched, chemisorbed overlayer with a nonconserved order parameter. We discuss our findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lifschitz, I. M., Zh. Eksp. Teor. Fiz. 42, 1354 (1962) [So v. Phys. - JETP 1 5, 939(1962)].Google Scholar
2. Allen, S. M. and Cahn, J. W., Acta. Metall. 27, 1085 (1979).Google Scholar
3. Sahni, P. S., Grest, G. S., and Safran, S. A., Phys. Rev. Lett. 50, 60 (1983).Google Scholar
4. Safran, S. A., Sahni, P. S., and Grest, G. S., Phys. Rev. B 28, 2693 (1983).Google Scholar
5. Grant, M. and Gunton, J. D., Phys. Rev. B28, 5496 (1983).Google Scholar
6. Viñals, J. and Gunton, J.D., Phys. Rev. B 33, 7795 (1986).CrossRefGoogle Scholar
7. Kang, H. C., Weinberg, W. H., and Deem, M. W., Phys. Rev. B 43, 11438 (1991).Google Scholar
8. Kang, H. C. and Weinberg, W. H., Phys. Rev. B 40, 7059 (1989).Google Scholar
9. Viñals, J. and Grant, M., Phys. Rev. B 36, 7036 (1987).Google Scholar
10. Fichthorn, K. A. and Weinberg, W. H., (Submitted to Phys. Rev.).Google Scholar
11. Fichthorn, K. A. and Weinberg, W. H., (Submitted to Phys. Rev. Lett.).Google Scholar
12. Kang, H. C. and Weinberg, W. H., Phys. Rev. B 41, 2234 (1990).CrossRefGoogle Scholar
13. Fichthorn, K. A. and Weinberg, W. H., J. Chem. Phys. 95, 1090 (1991).Google Scholar
14. Fichthorn, K. A. and Weinberg, W. H., (Submitted to Phys. Rev. Lett.).Google Scholar
15. Binder, K. and Landau, D. P., Phys. Rev. B 21, 1941 (1980).Google Scholar