Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T15:02:44.000Z Has data issue: false hasContentIssue false

Computer Simulation of Scattered Ion and Sputtered Species Effects in Ion Beam Sputter-Deposition of High Temperature Superconducting Thin Films

Published online by Cambridge University Press:  25 February 2011

Alan R. Krauss
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, 9700 South Cass Ave., Argonne, IL 60439
Orlando Auclello
Affiliation:
MCNC, Center for Microelectronics, 3021 Cornwallis Rd., Research Triangle Park, N.C. 27709-2889, and North Carolina State University, Department of Materials Science and Engineering, Raleigh, N.C. 27709-7919
Get access

Abstract

Ion beam sputter-deposition is a technique currently used by many groups to produce single and multicomponent thin films. This technique provides several advantages over other deposition methods, which include the capability for yielding higher film density, accurate stoichiometry control, and smooth surfaces. However, the relatively high kinetic energies associated with ion beam sputtering may lead to difficulties if the process is not properly controlled. Computer simulations have been performed to determine net deposition rates, as well as the secondary erosion, lattice damage, and gas implantation in the films, associated with primary ions scattered from elemental Y, Ba and Cu targets used to produce high temperature superconducting Y-Ba-Cu-O films. The simulations were performed using the TRIM code for different ion masses and kinetic energies, and different deposition geometries. Results are presented for primary beams of Ar+, Kr+ and Xe+ incident on Ba and Cu targets at 0° and 45° with respect to the surface normal, with the substrate positioned at 0° and 45°. The calculations indicate that the target composition, mass and kinetic energy of the primary beam, angle of incidence on the target, and position and orientation of the substrate affect the film damage and trapped primary beam gas by up to 5 orders of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weissmantel, C., Reisse, G., Erler, H. J., Henny, F., Bewilogua, K., Ebersbach, U., and Schurer, C., Thin Solid Films 3, 315 (1979); 96, 31 (1982).CrossRefGoogle Scholar
2. Harper, J. M. E., Cuomo, J. J., and Kaufman, H. R. in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Auciello, O. and Kelly, R. (Eds.), Elsevier, Amsterdam (1984).Google Scholar
3. Weissmantel, C., J. Vac. Sci. Technol. 18, 179 (1981).Google Scholar
4. Takagi, T., J. Vac. Sci. Technol. A2, 382 (1984).CrossRefGoogle Scholar
5. Eckstein, W., J. Nuclear Fusion Suppl. 1, 17 (1991).Google Scholar
6. Selinder, T. I., Larsson, G., Helmersson, U. and Rudner, S., J. Appl. Phys. 69, 390 (1991).CrossRefGoogle Scholar
7. Lee, W. W. Y. and Oblas, D., J. Appl. Phys. 46, 1728 (1975).Google Scholar
8. Kittl, J. A., Nieh, C. W., Lee, D. S. and Johnson, W. L., Met. Lett. 9, 336 (1990a); also Appl. Phys. Lett. 56, 2468 (1990b).CrossRefGoogle Scholar
9. Kittl, J. A., Johnson, W. L., and Nieh, C. W., J. Appl. Phys. 69, 6710 (1991).Google Scholar
10. Auciello, O., Krauss, A.R., Kingon, A.I., and Ameen, M.S., Scanning Microscopy, 4, 203 (1990).Google Scholar
11. Krauss, A. R., Auciello, O., Kingon, A. I., Ameen, M. S., Liu, Y. L., Barr, T., Graettinger, T.M., Rou, S.H., Soble, C.N. II, and Gruen, D.M., Applied Surface Science, 46, 67 (1990).Google Scholar
12. Lichtenwalner, D.J., Woolcott, R.R., Soble, C.N. II, Rou, S.H., Auciello, O., and Kingon, A.I., J. Appl. Phys, 70, 1 (1991)CrossRefGoogle Scholar
13. Fujita, J., Yoshitake, T., and Igarashi, H., Appl. Phys. Lett., 56, 295 (1990).CrossRefGoogle Scholar
14. Grace, J.M., McDonald, D.B., Reitjen, M.T., Olson, J., Kampwirth, R.T., and Gray, K.E., J. Appl. Phys., 70, 3867 (1991).CrossRefGoogle Scholar
15. Ameen, M. S., Auciello, O., Rou, S. H., Soble, C. N. II, Graettinger, T. M., Krauss, A. R., Kingon, A.I., and Ray, M.A., Amer. Inst. of Phys. Conf. Proc. No. 200, 79 (1988).Google Scholar
16. Carcia, P. F. and Shah, S. I., Appl. Phys. Lett., 56, 2345 (1990).CrossRefGoogle Scholar
17. Kao, A.S., Hwang, C., Novotny, V.J., Deline, V.R., and Gorman, G.L., J. Vac. Sci. Technol., A7, 2966 (1989).Google Scholar
18. Muroi, M., Okamura, Y., Suzuki, T., Tsuda, K., Nagano, M., and Mukae, K., Jap. J. Appl. Phys. Part 1, 29, 69 (1990).CrossRefGoogle Scholar
19. Lichtenwalner, D.J., Soble, C.N. II, Woolcott, R. R., Auciello, O., and Kingon, A. I. (to be submitted to J. Appl. Phys., 1992).Google Scholar
20. Biersack, J. P. and Haggmark, L.G., Nucl. Instr. Meth., 174, 257 (1980).CrossRefGoogle Scholar
21. Auciello, O. and Krauss, A.R. (to be submitted to J. Appl. Phys., 1992).Google Scholar