Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:39:05.816Z Has data issue: false hasContentIssue false

Computer Simulation of Pulsed Laser Ablation for YBaCuO Superconducting Films

Published online by Cambridge University Press:  16 February 2011

Toshiyuki Nakamiya
Affiliation:
Computer Center, Kyushu Tokai University, Toroku, Ohe-machi, Kumamoto 862, Japan
Kenji Ebihara
Affiliation:
Department of Electrical Engineering and Computer Science, Kumamoto University, Kurokami, Kumamoto 860, Japan
P. K. John
Affiliation:
Department of Physics, The University of Western Ontario, London, Ontario, Canada, N6A 3K7.
B. Y. Tong
Affiliation:
Department of Physics, The University of Western Ontario, London, Ontario, Canada, N6A 3K7.
Get access

Abstract

The dynamics of melting and ablation of high Tc YBa2Cu3O7-x superconducting thin films flashed by a pulsed KrF excimer laser(λ=248nm) or a pulsed Nd-YAG laser (λ =1.06μ m) were studied numerically. The fundamental model during a pulsed laser irradiation was a one-dimensional heat conduction equation. The finite element method was applied to solve the equation including the temperature dependence of the thermal conductivity of YBaCuO thin films. In addition, the microstructure of YBa2Cu3O7-x bulk(l.5mm thick) flashed by a pulsed XeCl excimer laser (λ =308nm) was investigated by scanning electron microscopy (SEM) in order to estimate the threshold incident laser energy density for surface melting and ablation. The good agreements between the numerical calculations and the experimental results were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chaudhari, P., Koch, R.H., Laibowitz, R.B., Mcguire, T.R. and Gambino, R.J., Phys.Rev.Lett. 58, 2684 (1987).Google Scholar
2. Suzuki, M. and Murakami, T., Jpn.J.Appl.Phys. 26, 524 (1987).Google Scholar
3. Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., Mclean, W.L. and Croft, M., Appl.Phys.Lett. 51, 619 (1987).Google Scholar
4. Kwo, J., Hsieh, T.C., Fleming, R.M., Hong, M., Liou, S.H., Davidson, B.A. and Feldman, L.C., Phys.Rev. B 36, 4039 (1987).Google Scholar
5. Richeson, D.S., Tonge, L.M., zhao, J., Zhang, J., Marcy, H.O., Marks, T.J., Wessels, B.W. and Kannewurf, C.R., Appl.Phys.Lett. 54, 2154 (1989).Google Scholar
6. Aizaki, N., Terashima, K., Fujita, J., and Matsui, S., Jpn. J.Appl.Phys. 27, 231 (1988).Google Scholar
7. Minamikawa, T., Yonezawa, Y., Otsubo, S., Maeda, T., Moto, A., Morimoto, A. and Shimizu, T., Jpn.J.Appl.Phys. 27, 619 (1988).Google Scholar
8. Koinuma, H., Takemura, Y., Hashimoto, T., Takeuchi, K. and Fueki, K., Jpn.J.Appl.Phys. 27, 652 (1988).Google Scholar
9. Nakamiya, Toshiyuki and Ebihara, Kenji, Trans.IEE of Japan 108-A, No.10, 443 (1988).Google Scholar
10. Wang, X.I., Nanba, T., Ikezawa, M., Isikawa, Y., Mori, K., Kobayashi, K., Kasai, K., Sato, K. and Fukase, T., Jpn.J. Appl.Phys. 26, 1391 (1987).Google Scholar
11. Arun Inam, Wu, X.D., Venkatesan, T., Ogale, S.B., Chang, C.C. and Dijkkamp, D., Appl.Phys.Lett. 51, 1112 (1987).Google Scholar
12. Koinuma, H., Takemura, Y. and Hashimoto, T., Annual Report of the Engineering Research Institute, Faculty of Engineering, University of Tokyo, 47, 145 (1988).Google Scholar
13. Hussey, B.W. and Gupta, A., Appl.Phys.Lett. 54, 1272 (1989).Google Scholar
14. Laegried, T., Fossheim, K., Sandvolt, E. and Julsrud, S., Nature 330, 637 (1987).Google Scholar
15. Uher, C. and Kaiser, A.B., Phys.Rev. B 36, 5680 (1987).Google Scholar
16. Leng, S., Narita, N., Higashida, K. and Mazaki, H., Jpn.J. Appl.Phys. 26 1394 (1987).Google Scholar