Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:56:23.774Z Has data issue: false hasContentIssue false

Computer Simulation of Displacement Damage in Silicon Carbide

Published online by Cambridge University Press:  01 February 2011

R. Devanathan
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, MS K8–93, Richland, WA 99352, U.S.A.
F. Gao
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, MS K8–93, Richland, WA 99352, U.S.A.
W. J. Weber
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, MS K8–93, Richland, WA 99352, U.S.A.
Get access

Abstract

We have performed molecular dynamics simulation of displacement events on silicon and carbon sublattices in silicon carbide for displacement doses ranging from 0.005 to 0.5 displacements per atom. Our results indicate that the displacement threshold energy is about 21 eV for C and 35 eV for Si, and amorphization can occur by accumulation of displacement damage regardless of whether Si or C is displaced. In addition, we have simulated defect production in high-energy cascades as a function of the primary knock-on atom energy and observed features that are different from the case of damage accumulation in Si. These systematic studies shed light on the phenomenon of non-ionizing energy loss that is relevant to understanding space radiation effects in semiconductor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Capano, M. A. and Trew, R. J., MRS Bull. 22, 19 (1997).Google Scholar
2. Neudeck, P. G., Okojie, R. S., and Chen, L. Y., Proc. IEEE 90(6), 1065 (2002).Google Scholar
3. Metzger, S., Henschel, H., Köhn, O., and Lennartz, W., IEEE Trans. Nucl. Sci. 49(3), 1351 (2002).Google Scholar
4. Finnis, M. W., MOLDY6-A Molecular Dynamics Program for Simulation of Pure Metals (UK AEA Harwell Laboratory Report 1988) AERE R13182.Google Scholar
5. Tersoff, J., Phys. Rev. B 49, 16349 (1994).Google Scholar
6. Gao, F. and Weber, W. J., Nucl. Instrum. Methods. Phys. Res. B 191, 504 (2002).Google Scholar
7. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).Google Scholar
8. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
9. Yuan, X. and Hobbs, L. W., Nucl. Instrum. and Methods. Phys. Res. B 191, 74 (2002).Google Scholar
10. Snead, L. L. and Zinkle, S. J., Nucl. Instrum. Methods. Phys. Res. B 191, 497 (2002).Google Scholar
11. Gao, F., Bylaska, E. J., Weber, W. J., and Corrales, L. R., Phys. Rev. B 64, 245208 (2001).Google Scholar
12. Caturla, M.-J., de la Rubia, T. D., Marqués, L. A., and Gilmer, G. H., Phys. Rev. B 54, 16683 (1996).Google Scholar