Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:44:25.706Z Has data issue: false hasContentIssue false

Computer Simulation of Diffusion and Adsorption in Pillared Clays

Published online by Cambridge University Press:  15 February 2011

Xiaohua YI
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles,CA 90089-1211
Muhammad Sahimi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles,CA 90089-1211
Katherine S. Shing
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles,CA 90089-1211
Get access

Abstract

We developed a model to describe the morphology and energetics of pillared clays. Grand- Canonical Ensemble Monte Carlo and Molecular Dynamics simulations are used to study diffusion and adsorption of finite-size molecules in such systems, and the effect of various factors on these processes is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sahimi, M., Gavalas, G. R. and Tsotsis, T. T., Chem. Eng. Sci. 45, 1443 (1990).Google Scholar
2. Deen, W. M., AIChE J. 33, 1409 (1987).Google Scholar
3. Sahimi, M., J. Chem. Phys. 96, 4718 (1992).Google Scholar
4. Kerr, G. T., Sci. Am. 261, 100 (1989).Google Scholar
5. Pinnavaia, T. J., Science 220, 365 (1983); P. Laszlo, Science. 235, 1473 (1987).Google Scholar
6. Lee, Y. W., Raythatha, R. H. and Tataxchuk, B. J., J. Catal. 115, 159 (1989).Google Scholar
7. Occelli, M. L., Innes, R. A., Hwu, F. S. S. and Hightower, J. W., Appl. Catal. 14, 69 (1985).Google Scholar
8. Barrer, R. M. and MacLeod, D. M., Trans. Faraday Soc. 51, 1290 (1955).Google Scholar
9. Brindley, G. W. and Sempels, R. E., Clays Clay Miner. 12, 229 (1977).Google Scholar
10. Lahav, H., Shani, V. and Shabtai, J., Clays Clay Miner. 26, 107 (1978).Google Scholar
11. Vaughan, D. E. W. and Lussier, R. J., in Proceedings of the 5th International Conference on Zeolites, Naples (1980).Google Scholar
12. Grim, R. E., Clay Mineralogy (McGraw-Hill, New York, 1986).Google Scholar
13. Yang, R. T. and Baksh, M. S., AIChE J. 37, 679 (1991).Google Scholar
14. Sahimi, M., J. Chem. Phys. 92, 5107 (1990).Google Scholar
15. Cracknell, R., Koh, C. A., Thompson, S. M. and Gubbins, K. E., MRS Proc. 290, 135 (1993).Google Scholar
16. Yi, X., Shing, K. S. and Sahimi, M., AIChE J. 41 (February 1995).Google Scholar
17. Snook, I. K. and Megan, W. van, J. Chem. Phys. 72, 2907 (1980).Google Scholar
18. Steele, W. A., Surf. Sci. 36, 317 (1973).Google Scholar
19. Baksh, M. S. and Yang, R. T., AIChE J. 38, 1357 (1992).Google Scholar
20. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).Google Scholar
21. Adams, D. J., Mol. Phys. 29, 307 (1975).Google Scholar
22. Sahimi, M., Applications of Percolation Theory (Taylor and Francis, London, 1994).Google Scholar
23. Chen, B. Y., Kim, H., Mahanti, S. D., Pinnavaia, T. J. and Cai, Z. X., J. Chem. Phys 100, 3872 (1994).Google Scholar
24. Yi, X., Shing, K. S. and Sahimi, M., Chem. Eng. Sci. (to be published).Google Scholar