Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:50:14.407Z Has data issue: false hasContentIssue false

A Computational Study of the Translational Motion of Protons in Zeolite H-ZSM-5

Published online by Cambridge University Press:  18 March 2011

M.E. Franke
Affiliation:
Aachen University of Technology, Institute of Inorganic Chemistry, Professor Pirlet Str. 1, Aachen, Germany
M. Sierka
Affiliation:
Humboldt University of Berlin, Institute of Chemistry/Quantum Chemistry, Jägerstr. 10/11, Berlin, Germany
J. Sauer
Affiliation:
Humboldt University of Berlin, Institute of Chemistry/Quantum Chemistry, Jägerstr. 10/11, Berlin, Germany
U. Simon
Affiliation:
Aachen University of Technology, Institute of Inorganic Chemistry, Professor Pirlet Str. 1, Aachen, Germany
Get access

Abstract

The potential energy profile for proton translational motions between two neighboring Alsites in zeolite H-ZSM-5 is calculated by a combined quantum mechanics-interatomic potential function approach. Thepotential energies of the six stable intermediate proton positions and the five transition structures along this path show an almost symmetrical trend reaching the maximum in the middle between these sites. Therefore, the maximum barrier will decrease with decreasing SiO2/Al2O3 ratio of thezeolite. For the SiO2/Al2O3 ratio examined (190) an activation energy of∼ 210 kJ/mol is calculated. This is much lower than the energy of deprotonation, about 1300 kJ/mol. The deprotonation energy of an Al-OH-Si bridge is obviously partially compensated by the proton affinity of the Si-O-Si bridges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sauer, J., Kölmel, C.M., Hill, J.-R., and Ahlrichs, R., !Chem. Phys. Letters, 164, 193 (1989).Google Scholar
2. Sauer, J., Sierka, M., and Haase, F., ACS Symp., Transition State in Catalysis, Dallas (1998), Series 721, American Chemical Society, Washington, 1999, pp. 358367.Google Scholar
3. Sierka, M., Sauer, J., J. Comput. Chem., 21, 1470 (2000).Google Scholar
4. Freude, D., Oehme, W., Schmiedel, H., and Staudte, B., J. Catal., 32, 137 (1974).Google Scholar
5. Ernst, H., Freude, D., Mildner, T., and Pfeifer, H., in: Proceedings of the 12th international Zeolite Conference: July 5-10, 1998, Baltimore, Maryland, USA, ed. Treacy, M.M.J., Marcus, B.K., Bisher, M.E., and Higgins, J.B.; Materials Research Society, Warrendale, 1999, Vol.4, pp. 29552962.Google Scholar
6. Sarv, D., Tuherm, T., Lippma, E., Keskinen, K., and Root, A., J. Phys. Chem., 99, 13763 (1995).Google Scholar
7. Baba, T., Inoue, Y., Shoji, H., Uematsu, T., and Ono, Y., Microporous Mater., 3, 647 (1995).Google Scholar
8. Baba, T., Komatsu, N., Ono, Y., and Sugisawa, H., J. Phys. Chem. B, 102, 804 (1998).Google Scholar
9. Franke, M.E., Simon, U., Solid State Ionics, 118, 311 (1999).Google Scholar
10. Franke, M.E., Simon, U., Phys. Stat. Solidi (b), 218, 287 (2000).Google Scholar
11. Simon, U., Franke, M.E., Micropor. and Mesopor. Mat., 41, 1 (2000).Google Scholar
12. Eichler, U., Brändle, M., and Sauer, J., J. Phys. Chem. B, 101(48), 10035 (1997).Google Scholar
13. Eichler, U., Kölmel, C.M., and Sauer, J., J. Comp. Chem., 18, 463 (1997).Google Scholar
14. Sierka, M., Sauer, J., J. Chem. Phys., 112(16), 6983 (2000).Google Scholar
15. Catlow, C.R.A., Dixon, M., and Machrodt, W.C., in Computer simulations of solids; Lecture Notes in Physics166; Catlow, C.R.A., Machrodt, W.C. (Eds), Springer-Verlag, Berlin, q 982, p. 130161.Google Scholar
16. Sierka, M., Sauer, J., J. Faraday Discuss., 106, 41 (1997).Google Scholar
17. Gale, J., J. Chem. Soc., Faraday Trans., 93, 629 (1997).Google Scholar
18. Ahlrichs, R., Bär, M., Häser, M., Horn, H., and Köilmel, C., Chem. Phys. Lett., 162, 165 (1989).Google Scholar
19. Treutler, O., Ahlrichs, R., J. Chem. Phys., 102, 346 (1995).Google Scholar
20. Becke, A.D., J. Chem. Phys., 98, 5648 (1993).Google Scholar
21. Schäfer, A., Horn, H., and Ahlrichs, R., J. Chem. Phys., 97, 2571 (1992).Google Scholar
22. Koningsveld, H. Van, Jansen, J.C., and Bekkum, H. van, Zeolites, 10, 235 (1990).Google Scholar
23.K.–P. Schröder, Sauer, J., Leslie, M., and Catlow, C.R.A., Zeolites, 12, 23 (1992).Google Scholar