Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:29:19.587Z Has data issue: false hasContentIssue false

Computational Diagnostics for Detecting Phase Transitions During Nanoindentation

Published online by Cambridge University Press:  01 January 1992

Susanne M. Lee
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551.
Carol G. Hoover
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551.
Jeffrey S. Kallman
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551.
William G. Hoover
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551. Department of Applied Science, UC Davis/Livermore, Livermore, California 94551.
Anthony J. De Groot
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551.
Frederick Wooten
Affiliation:
Department of Applied Science, UC Davis/Livermore, Livermore, California 94551.
Get access

Abstract

We study nanoindentation of silicon using nonequilibrium molecular dynamics simulations with up to a million particles. Both crystalline and amorphous silicon samples are considered. We use computational diffraction patterns as a diagnostic tool for detecting phase transitions resulting from structural changes. Simulations of crystalline samples show a transition to the amorphous phase in a region a few atomic layers thick surrounding the lateral faces of the indentor, as has been suggested by experimental results. Our simulation results provide estimates for the yield strength (nanohardness) of silicon for a range of temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoover, W. G., Computational Statistical Mechanics (Elsevier, Amsterdam, 1991), p. 255.Google Scholar
2. Holian, B. L., De Groot, A. J., Hoover, W. G., and Hoover, C. G., Phys. Rev. A, 41, 4552 (1990).Google Scholar
3. Hoover, W. G., De Groot, A. J., and Hoover, C. G., Comp. in Phys., 6, 155 (1992).Google Scholar
4. Stillinger, F. H. and Weber, T. A., Phys. Rev. B, 31, 5262, (1985).Google Scholar
5. Wooten, F. and Weaire, D., Solid State Physics 40, 1 (1987).Google Scholar
6. Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockney, B. J., Phys. Rev. Letts. 60, 2156 (1988).Google Scholar
7. Minowa, K. and Sumino, K., Phys. Rev. Letts. 69, 320 (1992).Google Scholar