Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:40:33.731Z Has data issue: false hasContentIssue false

Computation of the Onset of Point Defect Aggregation in Crystalline Silicon Using an Empirical Interatomic Potential

Published online by Cambridge University Press:  26 February 2011

T. Sinno
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139
R.A. Brown
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

The Stillinger-Weber interatomic potential is used in molecular dynamics simulations to investigate the equilibrium, transport and aggregation properties of self-interstitials and vacancies in crystalline silicon at temperatures ranging from 500K to the melting point. The simulations predict equilibrium configurations of a < 110 > dumbbell for the single self-interstitial and an inwardly relaxed structure for the single vacancy. Both single-defect structures exhibit significant derealization at high temperatures resulting in strongly temperature dependent entropies of formation, as suggested by diffusion experiments. Diffusion coefficients and mechanisms for the single defects are predicted as a function of temperature. The results for the single point defects are discussed in the context of the existing literature values. Aggregation of two point defects is investigated by the computation of binding energies and entropies for these structures. Interstitials exhibit significant aggregation driving forces across the entire temperature range under simulation conditions, while vacancies aggregate less readily.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abe, T.in: VLSI Electronics: Microstructure Science, 12, Eds. Einspruch, N. G. and Huff, H. (Academic Press, New York, 1985).Google Scholar
2. Brown, R.A., Maroudas, D., and Sinno, T., J. Crystal Growth 137, 12 (1994).Google Scholar
3. Maroudas, D. and Brown, R.A., Phys. Rev. B47, 15562 (1993).Google Scholar
4. Bracht, H., Stolwijk, N.A., and Mehrer, H.in Semiconductor Silicon 1994, Eds. Huff, H. R., Bergholz, W., and Sumino, K., (Electrochemical Society, Pennington, 1994).Google Scholar
5. Döller, A., Seibt, M., and Schröter, W.in Semiconductor Silicon 1994, Eds. Huff, H. R., Bergholz, W., and Sumino, K., (Electrochemical Society, 1994)Google Scholar
6. Batra, I.P., Abraham, F.F., and Ciraci, S., Phys. Rev. B35, 9552 (1987).Google Scholar
7. Baskes, M.I., Nelson, J.S., and Wright, A.F., Phys. Rev. B40, 6085 (1989).Google Scholar
8. Ungar, P. J., Takai, T., Halicioglu, T., and Tiller, W. A., J. Vac. Sci. and Tech., 11, 224, (1993).Google Scholar
9. Pantelides, S.T., Oshiyama, A., Car, R., and Kelly, P.J., Phys. Rev. B30, 2260 (1984).Google Scholar
10. Bar-Yam, Y. and Joanopoulos, J.D., Phys. Rev. B30, 1844 (1984).Google Scholar
11. Blöchl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70, 2435 (1993).Google Scholar
12. Stillinger, F.H. and Weber, T.A., Phys. Rev. B31, 5262 (1985).Google Scholar
13. Broughton, J.Q. and Li, X.P., Phys. Rev. B35, 9120 (1987).Google Scholar
14. Maroudas, D. and Brown, R.A., Appl. Phys. Letts. 62, 172 (1993).Google Scholar
15. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids. (Oxford University Press, Oxford, 1989).Google Scholar
16. Lutsko, J.F., Wolf, D., and Yip, S., J. Chem. Phys. 88, 6525 (1988).Google Scholar
17. Kane, E.O., Baraff, G.A., and Schlüter, M., Phys. Rev. B21, 5662 (1980).Google Scholar
18. Seeger, A. and Chik, K.P., Phys. Status Solidi 29, 455 (1968).Google Scholar
19. Seeger, A., Föil, H. and Frank, W., in: Radiation Effects in Semiconductors 1975, Eds. Urli, N.B. and Corbett, J.W. (1977).Google Scholar
20. Mayer, H.J., Mehrer, H. and Maier, K. Google Scholar
21. Gösele, U., Frank, W., Seeger, A., Solid State Commun. 45, 31 (1983).Google Scholar
22. Ungar, P. J., Halicioglu, T., and Tiller, W. A., Phys. Rev. B50, 7344 (1994).Google Scholar
23. Morehead, F. F., in: Defects in Elec. Mater., Eds. Stavola, M., Pearton, S. J., Davies, G., Mat, Res. Soc, Pittsburgh, (1988).Google Scholar
24. Zimmermann, H. and Ryssel, H., J. Electrochem. Soc, 139, 256 (1992).Google Scholar
25. Tan, T. Y. and Gösele, U., Appl. Phys. A37, 1, (1985).Google Scholar
26. Griffin, P.B. and Plummer, J. D., Int. Electron Device Meeting 1986, p522, (1986).Google Scholar