Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:34:27.991Z Has data issue: false hasContentIssue false

Comprehensive Study of Impact Ionization Coefficients of 4H-SiC

Published online by Cambridge University Press:  15 March 2011

T. Hatakeyama
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
T. Watanabe
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
K. Kojima
Affiliation:
National Institute of Advanced Industrial Science and Technology, Power Electronics Research Center, Tsukuba Center 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
N. Sano
Affiliation:
Institute of Applied Physics, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
T. Shinohe
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
K. Arai
Affiliation:
National Institute of Advanced Industrial Science and Technology, Power Electronics Research Center, Tsukuba Center 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

The electric field dependence and anisotropy of the impact ionization coefficients of 4H-SiC are investigated by means of the avalanche breakdown behavior of p+n diodes. The breakdown voltages as a function of doping density and the multiplication factors of a leakage current are obtained using p+n diode fabricated on (0001) and (1120) 4H-SiC epitaxial wafers. The obtained impact ionization coefficients show large anisotropy; the breakdown voltage of a p+n diode on (1120) wafer is 60% of that on (0001) wafer. We have shown that anisotropy of the impact ionization coefficients is attributable to the anisotropy of saturation velocity originated from the electronic structure of 4H-SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Konstantinov, A.O, Wahab, Q., Nordell, N., and Lindefelt, U.: Appl. Phys. Lett. Vol. 71 (1997), p. 90 Google Scholar
[2] Raghunathan, R., and Baliga, B. J.: Solid-State Electron. Vol. 43 (1999), p.199 Google Scholar
[3] Nakamura, S., Kumagai, H., Kimoto, T., and Matsunami, H.: Appl. Phys. Lett. May 6, Vol. 80 (2002), p. 3355 Google Scholar
[4] Kojima, K., Ohno, T., Fujimoto, T., Katsuno, M., Ohtani, N., Nishio, J., Ishida, Y., Takahashi, T., Suzuki, T., Tanaka, T. and Arai, K.: Appl. Phys. Lett., Vol. 81 (2002), p. 2974 Google Scholar
[5] Chynoweth, A. G.: Phys. Rev., vol. 109, no. 5 (1958), p. 1537 Google Scholar
[6] Hjelm, M., Nilsson, H-E, Martinez, A., Brennan, K. F., and Bellotti, E.: J. of Appl. Phys. Vol. 93(2003), p. 1099 Google Scholar
[7] Khan, I.A., Cooper, J. A. Jr., : Mater. Sci. Forum, Vol. 338–342(2000), p.761–4 PD:2000Google Scholar