Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:49:16.633Z Has data issue: false hasContentIssue false

Comprehensive study of anomalous conduction band structure of InxGa1−xAs1-−yNy

Published online by Cambridge University Press:  17 March 2011

C. Skierbiszewski
Affiliation:
High Pressure Research Center Unipress, Sokolowska 29/37, 01-142 Warszawa, Poland
P. Perlin
Affiliation:
High Pressure Research Center Unipress, Sokolowska 29/37, 01-142 Warszawa, Poland
P. Wisniewski
Affiliation:
High Pressure Research Center Unipress, Sokolowska 29/37, 01-142 Warszawa, Poland
A. Presz
Affiliation:
High Pressure Research Center Unipress, Sokolowska 29/37, 01-142 Warszawa, Poland
T. Suski
Affiliation:
High Pressure Research Center Unipress, Sokolowska 29/37, 01-142 Warszawa, Poland
J. Geisz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
W. Jantsch
Affiliation:
Institut für Halbleiterphysik, Johannes-Kepler-Universität, A-4040 Linz, Austria
D. Mars
Affiliation:
Agilent Laboratories, Palo Alto, USA
Get access

Abstract

Using free standing layer of InGaAsN we have succeeded in measuring the optical absorption in very broad spectral range (0.8-2.5eV). This gave us an insight into the conduction band density of states for the energies higher than the energy gap of this compound. By combining Hall effect measurements with determination of plasma edge frequency in infrared reflectivity for differently doped samples we were able to deduce the density of states, conduction band electrons effective mass and dispersion relation. In particular it turned out that both i) experimentally measured dispersion relation of the conduction band shows extremely high degree of nonparabolicity and consistently ii) the effective mass of electrons is few times larger than that corresponding to GaAs of the same electron concentration. So far the obtained experimental results are in line with recently proposed band anticrossing model of the electronic structure of III-N-V alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weyers, M., Sato, M., Ando, H., Jpn. J. Appl. Phys. 31, L853, (1992)Google Scholar
2. Wei, Su-Huai, Zunger, A., Phys. Rev. Lett. 76, 664, (1996)Google Scholar
3. Rubio, A., Cohen, M. L., Phys. Rev. B 51, 4343, (1995)Google Scholar
4. Neugebauer, J., Walle, C. G. Van de, Phys. Rev B 51, 10568, (1995)Google Scholar
5. Shan, W., Walukiewicz, W., Ager, J.W. III, Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., and Kurz, S.R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
6. Walukiewicz, W., Shan, W., Ager, J. W. III, Chamberlin, D. R., Hailer, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Proc. 195th Mtg. of the Electrochem. Soc., Seattle, WA, p.190, (1999)Google Scholar
7. Mattila, T., Wei, Su-Huai, and Zunger, Alex, Phys. Rev. B 60, R11245 (1999)Google Scholar
8. Perlin, P., Subramanya, S.G., Mars, D.E., Kruger, J., Shapiro, N.A., Siegle, H., Weber, E.R., Appl. Phys. Lett., 73, 3703 (1998).Google Scholar
9. Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R. and Keyes, B.M., J. Cryst. Growth 195, 401 (1998).Google Scholar
10. Perlin, P., Wisniewski, P., Skierbiszewski, C., Suski, T., Kaminska, E., Subramanya, S. G., Weber, E. R., Mars, D. E., Walukiewicz, W., Appl. Phys. Lett. 76, 1279, (2000)Google Scholar
11. Blackmore, J. S., J. Appl. Phys. 53, R123 (1982)Google Scholar
12. Skierbiszewski, C., Perlin, P., Wisniewski, P., Knap, W., Suski, T., Walukiewicz, W., Shan, W., Ager, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., and Kurtz, S.R., Appl. Phys. Lett. 76, 2409, (2000)Google Scholar
13. Zhang, Yong, Mascarenhas, A., Xin, H.P. and Tu, C.W., Phys. Rev. B 61, 7479 (2000)Google Scholar