Article contents
Comprehensive Kinetic of Defects in a-SI:H
Published online by Cambridge University Press: 21 February 2011
Abstractl
The introduction of several new principles into the analysis of transition kinetics of metastable defects in a-Si:H has produced substantially improved rate equation for the density of defects as functions of time, light intensity, and temperature. The solution of this equation is stretched exponential (SE) having properties that explain in unifying way many observations of defect properties, including generation and anneal of the defect density in homogeneous films and degradation and anneal of solar cells. Major consequences are found for both the steady-state and transient properties of the defect density and for interpretations of microscopic models of the defects. These properties are also shown to be analogous to those of metastable centers in other materials, particularly the metastable DX center in AlGaAs which offers rare insight into the microscopic origins of stretched exponentials that can be applied to a-Si:H in ways that provide new perspectives on effects of alloying and hydrogen on stability.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
REFERENCES
- 4
- Cited by