Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:36:31.438Z Has data issue: false hasContentIssue false

Compound Semiconductor Detectors for X-Ray Astronomy: Spectroscopic Measurements and Material Characteristics

Published online by Cambridge University Press:  10 February 2011

M. Bavdaz
Affiliation:
Space Science Department of the European Space Agency, P.O.Box 299, NL-2200AG Noordwijk
S. Kraft
Affiliation:
Space Science Department of the European Space Agency, P.O.Box 299, NL-2200AG Noordwijk
A. Peacock
Affiliation:
Space Science Department of the European Space Agency, P.O.Box 299, NL-2200AG Noordwijk
F. Scholze
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, D-10587 Berlin
M. Wedowski
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, D-10587 Berlin
G. Ulm
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, D-10587 Berlin
S. Nenonen
Affiliation:
Metorex International Oy, P.O. Box 85, FIN-02201 Espoo
M. A. Gagliardi
Affiliation:
Metorex International Oy, P.O. Box 85, FIN-02201 Espoo
T. Gagliardi
Affiliation:
Metorex International Oy, P.O. Box 85, FIN-02201 Espoo
T. Tuomi
Affiliation:
Helsinki University of Technology, Otakaari 1, FIN-02150 Espoo
K. T. Hjelt
Affiliation:
Helsinki University of Technology, Otakaari 1, FIN-02150 Espoo
M. Juvonen
Affiliation:
Helsinki University of Technology, Otakaari 1, FIN-02150 Espoo
Get access

Abstract

The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. We are currently investigating three high purity crystals - CdZnTe, GaAs and TlBr - as the basis for future hard X-ray detectors (above 10 keV). In this paper we present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance.

Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHM were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to ∼100 keV by use of efficient detectors with reasonable spectroscopic capabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bavdaz, M., Peacock, A., Nenonen, S., Jantunen, M.A., Gagliardi, T., Tuomi, T., Hjelt, K.T., Juvonen, M., Rantamäki, R., Kraft, S., Wedowski, M., Scholze, F., Ulm, G., McNally, P.J., Curley, J., Donilewsky, A.N., SPIE Vol.3114, 332 (1997)Google Scholar
2. “X-Ray Cross Section Compilation”, Vol 1, Rev 1, (Kaman Sciences Corporation, Colorado Springs, 1971)Google Scholar
3. Parnham, Kevin B., Nucl. Instr. Meth. A377, 487 (1996)Google Scholar
4. Abro, E., Johansen, G.A., Nucl. Instr. Meth. A377, 470 (1996)Google Scholar
5. “Semiconductors for room temperature nuclear detector applications”, Semiconductors and Semimetals Volume 43, edited by Schlesinger, T.E. and James, R.B., (Academic Press, 1995)Google Scholar
6. Scholze, F., Ulm, G., Nucl. Instr. Meth. A339, 40 (1994)Google Scholar
7. Reed, S.J.B., Ware, N.G., J. Phys. E5, 582 (1972)Google Scholar
8. Buttar, C.M., Nucl. Instr. and Meth. A395, 1 (1997)Google Scholar
9. McGregor, D.S., Hermon, H., Nucl. Instr. and Meth. A395, 101 (1997)Google Scholar