Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:28:52.310Z Has data issue: false hasContentIssue false

Compositionally Asymmetric Tri-Color Superlattices Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

H. N. Lee
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
H. M. Christen
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
C. M. Rouleau
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
S. K. Lee
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. H. Lowndes
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Get access

Abstract

Compositionally asymmetric tri-color superlattices (TCS) with a combination of BaTiO3/SrTiO3/CaTiO3 have been grown by pulsed laser deposition (PLD) on atomically-flat SrRuO3-covered (001) SrTiO3 substrates. Conducting SrRuO3 films with single-terrace steps that closely mimic those of the SrTiO3 substrate also were grown by PLD and serve as bottom electrodes. In order to achieve atomic control of each layer, we have calibrated precisely the number of laser pulses required to grow one unit-cell-thick layers (∼200 for a laser spot of 0.4 mm2). These conditions allowed recording of pronounced oscillations of the reflection high-energy electron diffraction (RHEED) specular spot intensity over the entire growth run - even for TCS layers totaling more than 1000 nm in total thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sai, N., Meyer, B., and Vanderbilt, D., Phys. Rev. Lett. 84, 5636 (2000)Google Scholar
2. Warusawithana, M. P., Colla, E. V., Eckstein, J. N., and Weissman, M. B., Phys. Rev. Lett. 90, 36802 (2003).Google Scholar
3. Visinoiu, A., Alexe, M., Lee, H. N., Zakharov, D. N., Pignolet, A., Hesse, D., and Gösele, U., J. Appl. Phys. 91, 10157 (2002).Google Scholar
4. Choi, J., Eom, C. B., Rijnders, G., Rogalla, H., and Blank, D. H. A., Appl. Phys. Lett. 79, 1447 (2001).Google Scholar
5. An ω -offset of about -19.5° was used for recording the reciprocal space map.Google Scholar