Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:15:57.443Z Has data issue: false hasContentIssue false

Compositional Dependence of the Quantum Efficiency of the Transition at 1.3 μm of Praseodymium in Halide Glasses

Published online by Cambridge University Press:  15 February 2011

A. Swartz
Affiliation:
Fiber Optic Materials Research Program, Rutgers University Piscataway, NJ 08855
A. Elyamani
Affiliation:
Fiber Optic Materials Research Program, Rutgers University Piscataway, NJ 08855
R. Pafchek
Affiliation:
Fiber Optic Materials Research Program, Rutgers University Piscataway, NJ 08855
E. Snitzer
Affiliation:
Fiber Optic Materials Research Program, Rutgers University Piscataway, NJ 08855
G. H. Sigel Jr
Affiliation:
Fiber Optic Materials Research Program, Rutgers University Piscataway, NJ 08855
Get access

Abstract

An improvement in the quantum efficiency of the 1.3 μm transition of Pr3+ has been acheived as a result of doping alternative halide glasses. An increase from 3.4% in ZBLAN [1] to 9.9% in a multicomponent halide glass is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohishi, Y., Kanamori, T., Kitagawa, T., Takahashi, S., Snitzer, E. & Sigel, G.H. Jr., Optics Letters, 16, 1747 (1991).10.1364/OL.16.001747CrossRefGoogle Scholar
2. Dureste, Y., Monerie, M., Allain, J.Y., and Poignant, H., Elect. Lett., 27, 626 (1991).10.1049/el:19910393Google Scholar
3. Carter, S.F., Szebesta, D., Davey, S.T., Wyatt, R., Brierley, M.C., and France, P.W., J. Lightwave Tech., LT–2, 593 (1984)Google Scholar
4. Stone, J. and Burrus, C.A., Appl. Opt.,13, 1256 (1974)10.1364/AO.13.001256Google Scholar
5. Po, H., Hakimi, F., Mansfield, R.J., MacCollum, B.C., Tumminelli, R.P and Snitzer, E., in Proc. OSA Seattle WA, Oct., 1986.Google Scholar
6. Digonnet, M.J.F. and Liu, K., J. Lightwave Tech., 7, 941, (1989)10.1109/50.29626Google Scholar
7. Mears, R.J., Reekie, L., Poole, S.B. and Payne, D. N., Elect. Lett., 21, 738 (1985)10.1049/el:19850521Google Scholar
8. Shimizu, M., Suda, H. and Horiguchi, M., Elect. Lett., 23, 768 (1987)10.1049/el:19870545Google Scholar
9. Ohishi, Y., Kanamori, T., Takahashi, S., IEEE Photonics Tech. Lett., 3, 688 (1991)10.1109/68.84453CrossRefGoogle Scholar
10. Ohishi, Y., Kanamori, T., Takahashi, S., Japanese Journal Appl. Phys., 30, no. 7B, L1282 (1991)10.1143/JJAP.30.1647Google Scholar
11. Amaranath, G., Buddhudu, S., Bryant, F.J., Xi, L., Yu, B. and Huang, S., Mat., Res. Bull., 25, 1317 (1990)10.1016/0025-5408(90)90091-FCrossRefGoogle Scholar
12. Weber, M.J., Varitimos, T.E. and Matsinger, B.H., Phys. Rev., B, 8, 47 (1973)10.1103/PhysRevB.8.47CrossRefGoogle Scholar
13. Carnall, W.T., Fields, P.R. and Rajnak, K., J. Chem. Phys., 49, 4412 (1968)10.1063/1.1669892Google Scholar
14. Reisfield, R. and Jorgensen, C.K., Handbook on Physics and Chemistry of RareEarths, Elsevier, Amdsterdam (1987)Google Scholar
15. Weber, M.J., J. Chem. Phys., 48, 4774 (1968)10.1063/1.1668061Google Scholar