Article contents
Composition Control in the Deposition of Cu(InGa)(SeS)2 Thin Films
Published online by Cambridge University Press: 01 February 2011
Abstract
The pentenary chalcopyrite compound Cu(InGa)(SeS)2 provides several potential advantages over Cu(InGa)Se2 as the absorber layer in thin film solar cells, especially with wide bandgap alloys. The effects of S addition to the quaternary alloy are investigated with films deposited by elemental thermal co-evaporation and by the reaction of metallic precursors in hydride gases. With co-evaporated films the addition of S complicates the control of composition through the film. The incorporation of the chalcogen species Se and S depend on the relative Cu in the film and, for films with excess Cu, on the relative group III composition. For the precursor reaction process the addition of S by the inclusion of H2S gas in the reaction enables control of the relative Ga concentration and bandgap of the film. With both processes the incorporation of S during deposition also effects the morphology and grain size. The co-evaporated films have smaller grains with S while the reacted films have larger grains which may be due to the higher TSS the S reaction enables.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 2
- Cited by