Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:35:13.389Z Has data issue: false hasContentIssue false

Composition and Structure of Zirconium Nitride Films Produced by Ion Assisted Deposition

Published online by Cambridge University Press:  21 February 2011

R. Valizadeh
Affiliation:
The Centre for Thin Film and Surface Research, University of Salford, M5 4WT, Uk
J.S. Colligon
Affiliation:
The Centre for Thin Film and Surface Research, University of Salford, M5 4WT, Uk
S.E. Donnelly
Affiliation:
The Centre for Thin Film and Surface Research, University of Salford, M5 4WT, Uk
C.A. Faunce
Affiliation:
The Centre for Thin Film and Surface Research, University of Salford, M5 4WT, Uk
D. Park
Affiliation:
The Centre for Thin Film and Surface Research, University of Salford, M5 4WT, Uk
H. Kheyrandish
Affiliation:
MATS, Wavertree Blvd South, Wavertree Technology Park, Liverpool L7 1PG, UK
Get access

Abstract

The growth mechanism of ZrNx films produced by reactive ion beam sputtering with or without concurrent low energy ion bombardment of argon or nitrogen has been investigated. The effect of substrate temperature in the range of 300-680K, partial pressure of nitrogen and ion/atom arrival rate on the composition and microstructure of the films have been studied. RBS analysis has confirmed that the nitrogen content varies over wide range 0-60 at. %, depending on the nitrogen/zirconium arrival rate, and the ion assist flux but it is independent of the ion assist energy. TEM analysis shows that the films are non-columnar and polycrystalline with grain sizes l-15nm which depend on the nitrogen content and the deposition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Molarius, M., Korhonen, A. S., Ristolainen, E. O., J. Vac. Sci. Technol. A 3, 2419 (1985).Google Scholar
2 Sproul, W. D., Thin Solid Film 107, 141 (1983).Google Scholar
3 Ostling, M., Nygren, S., Petersson, C. S., Norstrom, H., Buchta, R., Blom, H. O., Berg, S., Thin Solid Films 145, 81 (1986).Google Scholar
4 Schwartz, K., Williams, A. R., Cuomo, J. J., Harper, J. H. E. and Hentzell, H. T., Phy. Rev. B32–12, 8312 (1985).Google Scholar
5 Juza, R., Gabel, A., Rabenau, H., Klose, W., Z. Anog. Allg.Chem. 329, 136 (1964).Google Scholar
6 Ristolainen, E. O., Molarius, J. M., Korhonen, A. S., Lindroos, V. K., J. Vac. Sci. Technol. A 5, No 4, 2184 (1987).Google Scholar
7 Yoshitake, M., Yotsuya, T., Takiguchi, K., Ogawa, S., Jap. J. Appl. Phys. 29, No 12, 2800 (1990).Google Scholar
8 Horita, S., Tujikawa, T., Akahori, H., Kobayashi, M., Hata, T.. J. Vac. Sci. Technol. A 11,2452(1993).Google Scholar
9 Knotek, O., Munz, W. D., Leyendecker, T., J. Vac. Sci.Technol. A 5, 2173 (1987).Google Scholar
10 Berg, S., Blom, H. O., Larsson, T., Nender, C., J. Vac. Sci. Technol. A 5,202 (1987).Google Scholar