Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:42:39.274Z Has data issue: false hasContentIssue false

Complex Dielectric Spectroscopy Characterization of a Li0.982Ta1.004O3 Ferroelectric Single Crystal

Published online by Cambridge University Press:  10 February 2011

Ming Dong
Affiliation:
School of Materials Science and Engineering, The Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
Rosario A. Gerhardt
Affiliation:
School of Materials Science and Engineering, The Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
Get access

Abstract

The dielectric properties of a c-oriented ferroelectric Li0.982Ta1.004O3 single crystal have been investigated. The frequency and the temperature dependence of the dielectric properties have been measured from 500 to 650°C at frequencies ranging from 5 to 106 Hz. Both blocking and non-blocking electrodes were used for separating the electrode effect from the crystal bulk dielectric response. A low-frequency dispersion was identified to be due to the contribution of Li+ ionic carriers. Based on the electrical measurement data and complex nonlinear least squares fitting, an equivalent circuit is proposed to represent the dielectric properties of the single crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ballman, A. A., Levinstein, H. J., Capio, C. D. and Brown, H., J. Am. Cera. Soc, 50, 657 (1967).Google Scholar
2. Barns, R. L. and Carruthers, T. R., J. Appl Cryst., 3, 395 (1970).Google Scholar
3. Miyazawa, S. and Iwasaki, H., J. Crystal Growth, 10, 276 (1971).Google Scholar
4. Fujino, Yoshio, Tsuya, Hideki and Sugibuchi, Kiyoshi, Ferroelectrics, 2, 113 (1971).Google Scholar
5. Roth, R. S., Parker, H. S., Brower, W. S. and Waring, J. L., “Fast lion Transport in Solids. Solid State Batteries and Devices”, ed. van Gool, W. (North Holland, Amsterdam, 1973). page 217.Google Scholar
6. Sinclair, D. C. and West, A. R., Phys. Rev., 39 (18), 13586 (1989).Google Scholar
7. Huanosta, A. and West, A. R., J. Appl Phys., 61, 5386 (1987).Google Scholar
8. Ravez, J., Joo, G. T., Dong, M. and Réau, J.-M., Phys. Stat. Sol. (a), 146, K71 (1994).Google Scholar
9. Irvine, L. T. S., Sinclair, D. C and West, A. R., Adv. Mater., 2, 132 (1990).Google Scholar
10. Cole, K. S. and Cole, R. H., J. Chem. Phys., 9 (1951) 351.Google Scholar
11. Almond, D. P. and West, A. R., Solid State Ionics, 23 (1987) 27.Google Scholar
12. Macdonald, J. R., “Impedance Spectroscopy - Emphasizing Solid Materials and Systems”, (Wiley, New York, 1987).Google Scholar
13. Dong, M., Réau, J. M., Ravez, J. and Hagenmuller, P., J. Solid State Chem., 116 185192 (1995).Google Scholar
14. Dong, M., Réau, J.-M. and Ravez, J., Solid State Ionics, 91, 183190 (1996).Google Scholar