Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:36:49.038Z Has data issue: false hasContentIssue false

Complex Diameter Modulations in Silicon Carbide Nanowire Growth

Published online by Cambridge University Press:  01 February 2011

Hideo Kohno
Affiliation:
Department of Physics, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, JAPAN
Hideto Yoshida
Affiliation:
Department of Physics, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, JAPAN
Get access

Abstract

Silicon carbide nanowires were grown via a self-organized process. Some of the nanowires showed complex diameter fluctuations. The fluctuation was studied from the viewpoints of random walk and fractal. Power spectrum analysis of a fluctuation revealed that the fluctuation was not periodic and that the spectrum was colored. The distribution of increments had a fat tail which was not Gaussian but obeyed power law. Thus the diameter fluctuation was interpreted as a Lévy Flight. In addition, the fluctuation also showed multiaffine scaling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozaki, N., Ohno, Y., and Takeda, S., Appl. Phys. Lett. 73, 3700 (1998).Google Scholar
2. Haraguchi, K., Katsuyama, T., Hiruma, K. and Ogawa, K., Appl. Phys. Lett. 60, 745 (1992).Google Scholar
3. Wu, Y., Fan, R. and Yang, P., Nano Lett. 2, 83 (2002).Google Scholar
4. Björk, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Deppert, K., Wallenberg, L. R. and Samuelson, L., Nano Lett. 2, 87 (2002).Google Scholar
5. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. and Lieber, C. M., Nature 415, 617 (2002).Google Scholar
6. Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W. and Lieber, C. M., Science 302, 1377 (2003).Google Scholar
7. Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C. M., Nature 409, 66 (2001).Google Scholar
8. Cui, Y. and Lieber, C. M., Science 291, 851 (2001).Google Scholar
9. Cui, Y., Wei, Q., Park, H. and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
10. Givargizov, E. I., J. Crystal Growth 20, 217 (1973).Google Scholar
11. Kohno, H. and Takeda, S, Appl. Phys. Lett. 73, 3144 (1998).Google Scholar
12. Kohno, H., Takeda, S. and Tanaka, K., J. Electron Microsc. 49, 275 (2000).Google Scholar
13. Kohno, H., Iwasaki, T., and Takeda, S., Solid State Commun. 116, 591 (2000).Google Scholar
14. Kohno, H. and Takeda, S., J. Crystal Growth 216, 185 (2000).Google Scholar
15. Wagner, R. S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
16. Wang, L., Wada, H. and Allard, L. F., J. Mater. Res. 7, 148 (1992).Google Scholar
17. Kohno, H. and Yoshida, H., Solid State Commun. 132, 59 (2004).Google Scholar
18. Kohno, H. and Yoshida, H., Phys. Rev. E (accepted)Google Scholar
19. Mandelbrot, B. B., The Fractal Geometry of Nature, (Freeman, New York, 1982) p247.Google Scholar
20. Myllys, M., Maunuksela, J., Alava, M. J., Ala-Nissila, T. and Timonen, J., Phys. Rev. Lett. 84, 1946 (2000).Google Scholar
21. Mitchell, S. J., cond-mat/0210239.Google Scholar
22. Thelander, C., Mårtensson, T., Björk, M. T., Ohlsson, B. J., Larsson, M. W., Wallenberg, L. R. and Samuelson, L., Appl. Phys. Lett. 83, 2052 (2003).Google Scholar