Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:44:23.431Z Has data issue: false hasContentIssue false

Complete Conductivity Spectra of Crystalline and Glassy Fast Ion Conductors Up to Far Infrared Frequencies

Published online by Cambridge University Press:  16 February 2011

C. Cramer
Affiliation:
Argonne National Laboratory, Materials Science Division, Building 223, 9700 South Cass Avenue, Argonne, IL 60439, USA
R. Graeber
Affiliation:
Institut für Physikalische Chemie, Schlossplatz 4/7, 48149 Miünster, Germany
M.D. Ingram
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, AB9 2UE, Scotland, UK
T. Saatkamp
Affiliation:
Institut für Physikalische Chemie, Schlossplatz 4/7, 48149 Miünster, Germany
D. Wilmer
Affiliation:
Institut für Physikalische Chemie, Schlossplatz 4/7, 48149 Miünster, Germany
K. Funke
Affiliation:
Institut für Physikalische Chemie, Schlossplatz 4/7, 48149 Miünster, Germany
Get access

Abstract

Complete conductivity spectra have been taken of a lithium ion conducting glass of composition B2O3 · 0.56Li2O · 0.45LiBr and of lithium stabilized Na-β″-alumina, at various temperatures. — In the glass, it has forthe first time been possible to separate the hopping and vibrational contributions to theconductivity. The resulting hopping conductivity spectra display high-frequency plateaux similar to those known to exist in crystalline solid electrolytes like RbAg415 and Na-β-alumina. In the dispersive regime, the spectra are characterized bytwo different power-law exponents, p = 0.6 and q = 1.3. The data are evaluated by combined application of the jump relaxation model and the dynamic structure model. — Na-β″-alumina has pronounced high-frequency plateaux between about 200 GHz and 400 GHz. The hopping observed in the spectra can be decomposed into hops that are a priori unsuccessful and others that can be treated in terms of the jump relaxation model. The latter fraction is found to increase with increasing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wong, J., Angell, C.A., Glass, Structure by Spectroscopy, Dekker, New York, 1976.Google Scholar
[2] Burns, A., Chryssikos, G.D., Tombari, E., Cole, R.H., Risen, W.M. Jr., Phys. Chem. Glasses 30, 264 (1989).Google Scholar
[3] Hoppe, R., Kloidt, T., Funke, K., Ber. Bunsenges. Phys. Chem. 95, 1025 (1991).Google Scholar
[4] Funke, K., Kloidt, T., Wilmer, D., Carlile, C.J., Solid State Ionics 53-56, 947 (1992).Google Scholar
[5] Funke, K., Mat. Res. Soc. Symp. Proc. 210, 97 (1991).Google Scholar
[6] Funke, K., Prog. Solid St. Chem. 22, 111 (1993).Google Scholar
[7] Bunde, A., Ingram, M.D., Maass, P., J. Non-Cryst. Solids 172-174, 1222 (1994).Google Scholar
[8] Maass, P., Meyer, M., Bunde, A., Phys. Rev. B, in press (1995).Google Scholar
[9] Cramer, C., Funke, K., Saatkamp, T., Wilmer, D., Ingram, M.D., Z. Naturforsch., in press (1995).Google Scholar
[10] Strom, U., Ngai, K.L., Solid State Ionics 5, 167 (1981).Google Scholar
[11] Strom, U., Ngai, K.L., J. Phys. (Paris) 42, C4123 (1981).Google Scholar
[12] Ngai, K.L., Strom, U., Phys. Rev. B 38, 10350 (1988).Google Scholar
[13] Jorgensen, J.D., Rotella, F.J., Roth, W.L., Solid State lonics 5, 143 (1981).Google Scholar
[14] Almond, D.P., West, A.R., Grant, R.J., Solid State Commun. 44, 1277 (1982).Google Scholar
[15] Dunn, B., Schwarz, B.B., Thomas, J.O., Morgan, P.E.D., Solid State Ionics 28-30, 301 (1988).Google Scholar