Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T02:41:54.511Z Has data issue: false hasContentIssue false

Competitive Reactions in Unicomponent/Bicomponent Contact Systems

Published online by Cambridge University Press:  25 February 2011

M. Eizenberg*
Affiliation:
Department of Materials Engineering and the Solid State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Get access

Abstract

The advance of microelectronic devices has emphasized the important role of contact metallization. Contacts have become more and more complex in their structure. In this review we present some of our work on three different types of contact systems consisting of a unicomponent/bicomponent interface. The systems are: 1) alloy films (codeposited two metals) on Si, 2) a metal on Si1-xGex epilayers, and 3) a metal on a compound semiconductor (GaAs). Due to applied heat-treatments, competitive interfacial reactions take place between the various constituents of the contacts. These interfacial reactions can affects the properties of the contacts and their stability and reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFErences

1. Tu, K. N. and Mayer, J. W. in Thin Films - Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978).Google Scholar
2. Murarka, S. P., Suicides for VLSI Applications (Academic, New York, 1983).Google Scholar
3. Nicolet, M. -A. and Lau, S. S. in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1988), Vol. 6, p. 329.Google Scholar
4. Appelbaum, A., Eizenberg, M., and Brener, R., J. Appl. Phys. 55, 914 (1984).Google Scholar
5. Olowolafe, J. O., Tu, K. N., and Angilello, J., J. Appl. Phys. 50, 6316 (1979).Google Scholar
6. Mayer, J. W., Lau, S. S., and Tu, K. N., J. Appl. Phys. 50, 5855 (1979).Google Scholar
7. Tu, K. N., Hammer, W. N., and Olowolafe, J. O., J. Appl. Phys. 51, 1663 (1980).Google Scholar
8. Ottaviani, G., Tu, K. N., Mayer, J. W., and Tsaur, B. Y., Appl. Phys. Lett. 36, 331 (1980).Google Scholar
9. Eizenberg, M. and Tu, K. N., J. Appl. Phys. 53, 1577 (1982).CrossRefGoogle Scholar
10. Eizenberg, M., Phys. Stat. Sol. A73, 483 (1982).Google Scholar
11. d'Heurle, F.M., J. Appl. Phys. 57, 2311 (1985).Google Scholar
12. Rothman, S.J., J. Appl. Phys. 58, 2073(L) (1985).Google Scholar
13. Eizenberg, M., Thompson, R. D., and Tu, K. N., J. Appl. Phys. 58, 1886 (1985).Google Scholar
14. Ratner, E., Appelbaum, A., Brener, R., and Eizenberg, M., Phys. Stat. Sol. A94, 61 (1986).Google Scholar
15. Appelbaum, A. and Eizenberg, M., J. Appl. Phys. 56, 2341 (1984).Google Scholar
16. Appelbaum, A., Eizenberg, M., and Brener, R., Vacuum 33, 227 (1983).Google Scholar
17. Ben-Tzur, M. and Eizenberg, M., J. Vac. Sci. Technol. A9, 2721 (1991).Google Scholar
18. Beyers, R. and Sinclair, R., J. Appl. Phys. 52, 5240 (1985).CrossRefGoogle Scholar
19. Gas, P., Tardy, F.J., and d'Heurle, F.M., J. Appl. Phys. 60, 193 (1986).Google Scholar
20. Eizenberg, M., Murarka, S.P., and Heimann, P., J. Appl. Phys. 54, 3195 (1983).Google Scholar
21. Ben-Tzur, M., Eizenberg, M., and Greenblatt, J., J. Appl. Phys. 69, 3907 (1991).Google Scholar
22. Ghate, P. B., Blair, J. C., Fuller, C. R., and McGuire, G. E., Thin Solid Films 53, 117 (1977).CrossRefGoogle Scholar
23. Kanaya, H., Cho, Y., Hasegava, F., and Yamaka, E., Jpn. J. Appl. Phys. 29, L850 (1990).Google Scholar
24. Thompson, R. D., Tu, K. N., Angilello, J., Delage, S., and Iyer, S., J. Electrochem. Soc. 135 3161 (1988).CrossRefGoogle Scholar
25. Thomas, O., Delage, S., d'Heurle, F. M., and Scilla, G., Appl. Phys. Lett. 51, 228 (1989);Google Scholar
Thomas, O., d'Heurle, F. M., and Delage, S., J. Mater. Res. 5, 1455 (1990).Google Scholar
26. Buxbaum, A., Eizenberg, M., Raizman, A., and Schäffler, F., Appl. Phys. Lett. 59, 665 (1991).Google Scholar
27. Buxbaum, A. and izenberg, M., unpublished.Google Scholar
28. Buxbaum, A., Eizenberg, M., Raizman, A., and Schäffler, F., Jpn. J. Appl. Phys., 30, (1991);Google Scholar
Structure and Properties of Interfaces in Materials, Edited by. Clark, W. A. T., Dahmen, U. and Briant, C. L., (Mater. Res. Soc. Proc. 238, Pittsburgh, PA 1991).Google Scholar
29. Kaufman, L., Buxbaum, A., and Eizenberg, M., unpublished.Google Scholar
30. Lahav, A., Eizenberg, M., and Komem, Y., J. Appl. Phys. 60, 991 (1986).CrossRefGoogle Scholar
31. Genut, M. and Eizenberg, M., J. Appl. Phys. 66 5456 (1989).Google Scholar
32. Lahav, A., Eizenberg, M., and Komem, Y., J. Appl. Phys. 62, 1768 (1987).Google Scholar
33. Sands, T., Keramidas, V. G., Washburn, J., and Gronsky, R., Appl. Phys. Lett. 48, 402 (1986).Google Scholar
34. Chen, S. M., Carter, C. B., Palmstrom, C. J., and Ohashi, T. in Thin Films - Interfaces and Phenomena, edited by Nemanich, P. J., Ho, P. S., and Lau, S. S., (Mater. Res. Soc. Proc. 51, Pittsburgh, PA 1986) pp. 361366.Google Scholar
35. Shiau, F. Y., Chang, Y. A., and Chen, L. J., J. Electronic Materials, 11, 433 (1988).Google Scholar
36. Beyers, R., Kim, K. B., and Sinclair, R., J. Appl. Phys. 61, 2195 (1987).Google Scholar
37. Sands, T., Keramidas, V. G., Yu, K. M., Washburn, J., and Krishnan, K., J. Appl. Phys. 62, 2070 (1987).Google Scholar