Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:03:52.766Z Has data issue: false hasContentIssue false

Competing Initial Reactions at Transition-Metal/Silicon Interfaces

Published online by Cambridge University Press:  26 February 2011

G. W. Rubloff*
Affiliation:
IBM Thomas J. Watson Research Center, P. O. Box 218, Yorklown Heights, N.Y. 10598
Get access

Abstract

The process of suicide formation by contact reaction at metal/Si interfaces normally involves rather uniform motion of the growth fronts which separate metal, suicide, and Si regions, as has been observed for suicide growth in many transition-metal/Si systems. At lower temperatures, however, the reaction behavior can be complicated significantly by the presence of other material reactions which may compete with interfacial suicide formation. For refractory metals, strong interfacial mixing over considerable depth (∼ 100 Å or more) is observed at temperatures too low for the normal inlerlacial suicide formation process to contribute; the highly nonuniform character of this reaction, as shown by ion scattering and TEM studies, suggests that other material reactions (e.g., grain boundary diffusion) must dominate the interfacial chemistry at low temperature. In a similar way, anomalous and nonuniform reaction behavior during the low temperature deposition of initial transition metal layers on Si apparently involves surface diffusion processes which are faster than inlerlacial suicide formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tu, K. N. and Mayer, J. W., in Thin Films - Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978), p. 359.Google Scholar
2. Rubloff, G. W., Tromp, R., and van Loenen, E. J., submitted for publication.Google Scholar
3. Tromp, R. M., Rubloff, G. W., and van Loenen, E. J., J. Vac. Sci. Technol. (in press).Google Scholar
4. Rubloff, G. W., Surface Science 132, 268 (1983).Google Scholar
5. Rubloff, G. W., Advances in Solid State Physics Festkorperprobleme Vol. XXIII p. 179, Grosse, P. (ed.), (Vieweg, Braunschweig, F.R. Germany, 1983).Google Scholar
6. Butz, R., Rubloff, G. W., Tan, T. Y., and Ho, P. S., Phys. Rev. B15 30, 5421 (1984).Google Scholar
7. Clabes, J. G., Rubloff, G. W., and Tan, T. Y., Phys. Rev. B15 29, 1540 (1984).Google Scholar
8. van Loenen, E. J.. Frenken, J. W. M., and van der Veen, J. F., Appl. Phys. Leiters 45, 42 (1984).Google Scholar
9. van Loenen, E. J., Fischer, A.E.M.J., and van der Veen, J. F., Surface Science 155, 65 (1985).Google Scholar
10. Matz, R., Purtell, R. J., Yokota, Y., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A 2, 253 (1984).Google Scholar
11. Franciosi, A., Peterman, D. J., and Weaver, J. H., J. Vac. Sci. Technol. 19, 657 (1981).Google Scholar
12. Rubloff, G. W., Uliramicroscopy 14, 107 (1984).Google Scholar
13. Rossi, G., Abbati, I., Braicovich, L., Lindau, I., and Spicer, W. E., Phys. Rev. BI5 25, 3627 (1982).Google Scholar
14. Braicovich, L., Surface Science 132, 315 (1983).Google Scholar
15. Cheung, N. W., Grunthaner, P. J., Grunthaner, F. J., Mayer, J. W., and Ulrich, B. M., Vac. Sci. Technol. 18, 917 (1981).Google Scholar
16. Grunthaner, P. J., Grunthaner, F. J., Madhukar, A., and Mayer, J. W., J. Vac. Sci. Technol. 19, 649 (1981).Google Scholar
17. Franciosi, A. and Weaver, J. H., Surface Science 132, 324 (1983).Google Scholar
18. Cheung, N. W., Culbcrtson, R. J., Feldman, L. C., Silverman, P. J., West, K. W., and Mayer, J. W., Phys. Rev. Leners 45, 120 (1980).Google Scholar
19. Cheung, N. W. and Mayer, J. W., Phys. Rev. Leners 46, 671 (1981).Google Scholar
20. Tromp, R. M., van Loenen, E. J., lwami, M., Smecnk, R. G., Saris, F. W., Nava, F., and Ollaviani, G., Surface Science 124. 1 (1983).Google Scholar
21. Stöhr, J. and Jaeger, R.. J. Vac. Sci. Technol. 21, 619 (1982).Google Scholar
22. Ho, P. S.. Schmid, P. E., and Foli, H., Phys. Rev. Leiters 46, 782 (1981).Google Scholar
23. Foll, H.. Ho, P. S.. and Tu, K. N., Phil. Mag. A45, 31 (1982).Google Scholar
24. Cherns, D., Smith, D. A., Krakow, W., and Batson, P. E., Phil. Mag. 45, 107 (1982).Google Scholar
25. Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Letters 50, 429 (1983).Google Scholar