Published online by Cambridge University Press: 15 February 2011
High-resolution electron microscopy (HREM) and image simulations using the multislice algorithm have been used to study the atomic structure of a Pd/NiO (111) interface in an intemally oxidized sample. Samples prepared in this way result in cube-on-cube oriented or twin-related precipitates whose (111) interfaces exhibit a contrast modulation along the boundary plane in HREM images. Previous studies have reported that the observed structural period of this modulation corresponds qualitatively to the expected spacing if the boundary was composed of a network of misfit dislocations. In this study, rigid models of the (111) interface as viewed from the [110] direction were simulated using the EMS suite of programs. The questions we address are: (1) whether the terminating plane on the oxide side is made up of a Ni or an 0 layer, and (2) whether a rigid body translation normal to the interface exists. Finally, the results of the simulations are compared and contrasted to through-focal experimental images to investigate the origin of the contrast modulations and their possible relation to the extent of the misfit localization in these systems.