Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:07:58.582Z Has data issue: false hasContentIssue false

Comparison of the Thermal Stabilities of Amorphous Hydrides Formed by Zr-Based Metallic Glasses

Published online by Cambridge University Press:  26 February 2011

J. S. Cantrell
Affiliation:
Department of Chemistry, Miami University, Oxford, OH 45056
R. C. Bowman Jr.
Affiliation:
Chemistry and Physics Laboratory, The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009
Get access

Abstract

Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) measurements were performed on a-Zr2 PdHx, a-Zr3 RhHx, a-Zr76 Fe24 Hx, and a- Zr2NiHx to assess the effects of hydrogen on their thermal stabilities. Only exothermic DSC peaks were observed for the hydrogen-free glasses and are shown to correspond to the formation of crystalline intermetallic phases. On the other hand, heating of the amorphous hydrides gives decomposition reactions with the generation of ZrHx (1.5 <x < 2.0) and either free metal (e.g., Rh) or a Zr-depleted intermetallic (e.g., ZrPd). With the exception of the Zr2 PdHx samples, hydrogenation significantly decreases the thermal stabilities (i.e., the exothermic transitions occur at lower temperatures in the amorphous hydrides). Endothermic peaks, which are associated with hydrogen evolution from the glass, are observed when the hydrogen-to-metal ratios approach unity.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koster, U. and Herold, U., in Glassy Metals I, edited by Guntherodt, H. J. and Beck, H. (Springer-Verlag, Berlin, 1981) p. 225.Google Scholar
2. Altounian, Z., Guo-hua, T. and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).Google Scholar
3. Altounian, Z., Volkert, C. A. and Strom-Olsen, J. O., J. Appl. Phys. 57, 1777 (1985).Google Scholar
4. Buschow, K. H. J., J. Phys. F:Met Phys. 14, 593 (1984).Google Scholar
5. Cantrell, J. S., Wagner, J. E. and Bowman, R. C. Jr., J. Appl. Phys. 57, 545 (1985).Google Scholar
6. Matsuura, M., J. Mater. Science 21, 2207 (1986).Google Scholar
7. Wagner, J. E., Bowman, R. C. Jr. and Cantrell, J. S., J. Appl. Phys. 58, 4573 (1985).Google Scholar
8. Dini, K. and Dunlap, R. A., J. Phys. F:Met. Phys. 15, 273 (1985).Google Scholar
9. Fries, S. M., Wagner, H.-G., Campbell, S. J., Gronser, U., Blaes, N. and Steiner, P., J. Phys. F:Met. Phys. 15, 1179 (1985).Google Scholar
10. Bambakidis, G. and Bowman, R. C. Jr., Hydrogen in Disordered and Amorphous Solids (Plenum, New York, 1986).Google Scholar
11. Andresen, A. F. and Maeland, A. J., in Proceedings of the International Symposium on Properties and Applications of Metal Hydrides V, p 65, 1986, Maubuisson, France and J. Less Common Metals (1986). In Press.Google Scholar
12. Bowman, R. C. Jr., Craft, B. D., Cantrell, J. S. and Venturini, E. L., Phys. Rev. B31, 5604 (1985).Google Scholar
13. Aubertin, F., Gonser, U., Campbell, S. J., and Wagner, H. G., Z. Metallkde. 76, 237 (1985).Google Scholar