Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-04T20:02:55.536Z Has data issue: false hasContentIssue false

Comparison of the Structure of Grain Boundaries in Silicon and Diamond by Molecular-Dynamics Simulations

Published online by Cambridge University Press:  10 February 2011

P. Keblinski
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA. Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany.
S. R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
H. Gleiter
Affiliation:
Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany.
Get access

Abstract

Molecular-dynamics simulations were used to synthesize nanocrystalline silicon with a grain size of up to 75 Å by crystallization of randomly misoriented crystalline seeds from the melt. The structures of the highly-constrained interfaces in the nanocrystal were found to be essentially indistinguishable from those of high-energy bicrystalline grain boundaries (GBs) and similar to the structure of amorphous silicon. Despite disorder, these GBs exhibit predominantly four-coordinated (sp3-like) atoms and therefore have very few dangling bonds. By contrast, the majority of the atoms in high-energy bicrystalline GBs in diamond are three-coordinated (sp2-like). Despite the large fraction of three-coordinated GB carbon atoms, they are rather poorly connected amongst themselves, thus likely preventing any type of graphite-like electrical conduction through the GBs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, papers in Polycrystalline Semiconductors, edited by Moller, H.-J., Strunk, H. P. and Werner, J. H., Springer Proceedings in Physics Vol. 35 (Springer, Berlin, 1989);Google Scholar
Polycrystalline Semiconductors II, edited by Werner, J. H. and Strunk, H. P., Springer Proceedings in Physics Vol. 54 (Springer, Berlin, 1991).Google Scholar
2. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
3. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., Acta. Mat. 45, 987 (1997); Phys. Lett. A 226, 205 (1997).Google Scholar
4. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996); J. Amer. Ceram. Soc. 80 717 (1997).Google Scholar
5. Bourret, A. and Bacmann, J. J., Surface Science 162, 495 (1985).Google Scholar
6. See, for example, Wolf, D. and Merkle, K. L. in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman and Hall, 1992), p. 87 ff.Google Scholar
7. Phillpot, S. R. and Wolf, D., Phil. Mag. A 60, 545 (1989).Google Scholar
8. Luedtke, W. D. and Landman, U., Phys. Rev. B 37, 4656 (1988);Google Scholar
Luedtke, W. D. and Landman, U., Phys. Rev. B 40, 1164 (1989).Google Scholar
9. Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
10. Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988).Google Scholar
11. Hwang, N. M., Hahn, J. H. and Yoon, D. Y., J. Cryst. Growth 160, 87 (1996);Google Scholar
Hwang, N. M. and Yoon, D. Y., J. Cryst. Growth. 160, 98 (1996).Google Scholar
12. Csencsits, R., Zuiker, C. D., Gruen, D. M. and Krauss, A. R., Solid State Phen. 51–52, 261 (1996).Google Scholar